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ABSTRACT
Recent fabrication research across HCI and graphics shows an in-
credible diversity of work, much of which features characterization
experiments. However, performance and reporting of these exper-
iments are wildly inconsistent, not only reducing transparency
that reassures reviewers and readers of a project’s rigour but also
challenging a technique’s replicability by future researchers. We
propose building a domain-specific language (FEDT: Fabrication
Experiment Design Tool) which can express a wide variety of such
characterization experiments, and which can be extended to many
different machines. This language is sufficiently expressive to de-
scribe many types of experiments (3D printing, lasercutting, post-
processing), including ones which require human intervention in
their steps. We replicate classic fabrication experiments in FEDT to
demonstrate its flexibility and discuss the importance and applica-
bility of domain-specific languages and tools to Open Science.
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• Human-centered computing → Interactive systems and
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1 INTRODUCTION
Digital fabrication has become a booming area in Human-Computer
Interaction (HCI) research, with a broad range of applications, tools,
and techniques. A core part of evaluating this type of work is “char-
acterization experiments,” where authors create fabricated artefacts
under specific, varied conditions and subject them to controlled
tests to characterize their behaviour. These experiments explore
the generalizability and replicability of technical contributions: e.g.,
will it work with my lasercutter? What if I rotate it 90 degrees
before 3D printing? Can users see a glowing effect in an office
environment, or only in low light?

Researchers fabricate required objects from digital files, using
digitally-controlled machinery. Completed objects are subjected to
characterization tests, from which emerge digital readings, which
are recorded, analyzed with code, transformed into digital graphs,
and included in digital conference paper submissions. The inter-
esting HCI challenges, of course, are the interfaces between the
human and these digital processes. Humans can contribute at sev-
eral points: as a fabrication partner plugging gaps in machinery
or infrastructure (e.g., to assemble ruffles [Signer et al. 2021]), as
a comment on mechanization (e.g., by being the machine [Deven-
dorf and Ryokai 2015]), or as a source of noise in the experiments
themselves (e.g., providing unique capacitive signals [Schmitz et al.
2019]). Supporting and cataloging the community’s rich, diverse
experimentation while harnessing its essential digital nature could
boost open science and replicability [Echtler and Häußler 2018;
Feger et al. 2019; Howell and Bateman 2023], and therefore the
growth of this vibrant research area. In this spirit, we create FEDT :
the Fabrication Experiment Design Tool.

2 RELATEDWORK
Formal grammars capture commonalities between a wide variety
of structures, like Vega does with graphical visualization [McNutt
and Chugh 2021; Satyanarayan et al. 2017, 2016], and Taxon does
with fabrication machines [Tran O’Leary et al. 2021]. In this vein,
FEDT captures the common structure of fabrication experiments.
Beyond capturing structural commonalities, these grammars can
aid in constructing structures; they are fully-fledged domain-specific
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Figure 1: The general experimental flow FEDT supports.

languages (DSLs). In fabrication, O’Leary, et al., have published sev-
eral programmatic interfaces to fabrication machines [Tran O’Leary
et al. 2023; Twigg-Smith and Peek 2023], which inform our work
conceptually. DSLs are also emerging as tools for experiments. Tea
[Jun et al. 2019] and Tisane [Jun et al. 2022] support analysis, help-
ing users choose and execute statistical tests. We interface with
Tea, enabling us to focus on experiments’ overall structure.

3 HOW CANWE DESCRIBE AND SUPPORT
FABRICATION EXPERIMENTS?

With inspiration from some exemplar papers and our own practice
in the fabrication research space, we describe a general, high-level
experimental flow through experiments (see Figure 1). This be-
gins with a user setting up an object’s geometry (CAD), material,
and manufacture (CAM) parameters; then continues with creat-
ing toolpaths to be sent to the manufacturing machine; and then
fabricating the physical object. After an object is manufactured,
researchers may post-process it and/or have users interact with
it. At some point, data about the object’s properties or behaviours
are measured, and perhaps fed to statistical testing algorithms. The
experiment is finally reported through text and, often, plots.

We explore scaffolding for independent (intentionally-varied)
and dependent (measured) variables introduced at various points
of the experimental flow. We also support reporting on the arte-
facts generated at different stages: geometry files (such as 2D .svg
or 3D .stl), manufacture settings files, toolpaths, physical objects,
experimental data collection files, and standardized report text.

FEDT is a language embedded in python, which we use in a
Jupyter Notebook. It consists of library files that encode and execute
particular actions; these are trivially extensible by e.g., passing flags
to a commandline slicer to set a print temperature, overriding a
lasercutter object to connect with a different lasercutter, or by

Figure 2: A FEDT representation of a CircWood [Ishii et al.
2022] experiment.

writing custom functions that are passed as arguments into the
library.

FEDT is built of three major components: variables, executors,
and workflows. The user defines variables to describe what they
will test. Executors are machines and functions that can execute
actions in the experiment flow, along with their configurations.
Workflows are collections of calls to executors to perform an exper-
iment’s steps. A sample workflow for an existing published work
(CircWood, [Ishii et al. 2022]) is shown in Figure 2.

4 DISCUSSION
4.1 Handling Randomness
Fabrication processes are subject to variation that may influence
the quality and behaviour of fabricated objects: e.g., factors like
atmospheric temperature and humidity affect 3D printing. Thus, it
is difficult to know what to model in experiments.

4.2 Group Analysis of Experimental Programs
FEDT provides the opportunity to analyze collections of executed
experiments, where parameters and machine settings tweaked and
keywords or short-textual descriptions are stored in a linked man-
ner. Search over collections could enable makers or researchers to
gain inspiration on relevant settings for future experiments.

5 CONCLUSION
We presented a new type of design language for fabrication research
characterization experiments: FEDT. We hope that this will make
fabrication research more replicable and portable, in classic Open
Science fashion.
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