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SMT-based verification of low-level code requires modeling and reasoning about memory operations. Prior
work has shown that optimizing memory representations is beneficial for scaling verification—pointer analysis,
for example can be used to split memory into disjoint regions leading to faster SMT solving. However, these
techniques are mostly designed for C and C++ programs with explicit operations for memory allocation which
are not present in all languages. For instance, on the Ethereum virtual machine, memory is simply a monolithic
array of bytes which can be freely accessed by Ethereum bytecode, and there is no allocation primitive.

In this paper, we present a memory splitting transformation guided by a conservative memory analysis for
Ethereum bytecode generated by the Solidity compiler. The analysis consists of two phases: recovering memory
allocation and memory regions, followed by a pointer analysis. The goal of the analysis is to enable memory
splitting which in turn speeds up verification. We have implemented both the analysis and the memory
splitting transformation as part of a verification tool, CertoraProver, and show that the transformation speeds
up SMT solving by up to 120× and additionally mitigates 16 timeouts when used on 229 real-world smart
contract verification tasks.
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1 Introduction
Smart contracts are programs that govern (usually financial) transactions between parties in the

context of a distributed ledger or blockchain. They are typically written in high-level languages such
as Solidity [88], Vyper [97], Rust [80] andMove [75], but are then compiled into a low-level language
supported by the underlying blockchain where the program will actually run, e.g., EVM bytecode,
eBPF [47], and WebAsssembly [100]. Finding (and ensuring the absence of) bugs, including those
introduced by miscompilation is of paramount importance for this domain because vulnerabilities
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1 rule allSame(uint n, uint i1, uint i2, uint sz) {

2 C.Streams s = init(n, i1, i2, sz);

3 assert(forall uint j .

4 (0 <= j && j < sz) => s.k1[j] == i1);

5 }

1 contract C {

2 struct Streams {uint[] k1; uint[] k2;}

3
4 function init(uint n, uint i1, uint i2, uint sz)

5 pure public returns (Streams memory) {

6 Streams memory s;

7 s.k1 = new uint[](sz);

8 s.k2 = new uint[](sz);

9 s.k1[0] = i1;

10 s.k2[0] = i2;

11 for(uint i = 1; i < sz; i++) {

12 s.k1[i] = s.k1[i-1];

13 s.k2[i] = s.k2[i-1] ** (n + i);

14 }

15 return s;

16 }

17 }

(a) (Bottom) A contract that initializes two streams.
(Top) A property in CertoraProver’s specification language.

1 s := MLOAD 0x40

2 fp0 := 0x40 + s

3 MSTORE 0x40 fp0

4
5 MSTORE s 0x60

6 s_k2 := 0x20 + s

7 MSTORE s_k2 0x60

8
9 k1 := MLOAD 0x40

10 MSTORE k1 sz

11 k1_elems := 0x20 * sz

12 k1_len := 0x20 + k1_elems

13 fp1 := k1 + k1_len

14 MSTORE 0x40 fp1

15 MSTORE s k1

16
17 k2 := MLOAD 0x40

18 // Increment, initialize k2

19 // similar to k1

20 ...

(b) Simplified TAC derived from the EVM
corresponding to line 6 - line 8 of init.

Fig. 1. (Left) A Solidity program and it’s specification, and (Right) the TAC corresponding to the program
generated by decompiling the Ethereum bytecode corresponding to the Solidity program. 0xN represents
hexadecimal numbers.

in smart contracts can be exploited to cause severe financial losses, as has been evident from a
myriad of recent examples.1
Formal verification can greatly increase the confidence that a contract is free of such vulner-

abilities before deployment. Due to the tremendous advancements made in the performance of
off-the-shelf Satisfiability Modulo Theories (SMT) solvers [30, 44], developing a verification tool
using these tools is an attractive approach, as is evident from recent surveys that discuss dozens
of tools [45, 64]. At a high level these tools work as follows: given a specification, they extract a
verification condition (VC) from the input program. The VC is then checked by an SMT solver: the
validity of the VC implies that the program satisfies its specification.

Problem. Verifying EVM programs necessarily requires reasoning about pointers and memory.
EVM’s basic modeling of memory as single array means that the underlying SMT solvers must
effectively explore an intractably large number of states as it is forced to reason about whether any
two memory operations access the same locations. This adds additional burden on off-the-shelf
SMT solvers [28, 30, 44, 46], leading to long verification times and frequent timeouts.

Insight. The key insight of this paper is that a pointer analysis guided memory splitting transfor-
mation applied to the target EVM program as a pre-processing step can mitigate timeouts and reduce
SMT solving time. We incorporate this insight within a verifier, CertoraProver, that targets EVM
bytecode. CertoraProver has a specification language that allows users to write high-level functional
correctness properties using invariants, and pre- and post-conditions. CertoraProver compiles the
specification and the EVM bytecode into a register-based intermediate representation (IR), called
TAC, from which it generates a VC by computing the weakest precondition [29]. We introduce a
new memory splitting transformation on the low-level TAC program before generating VCs, as
part of a pre-processing phase. To ensure that this transformation is semantics preserving, it is
guided by a new memory analysis. As a result of this pre-processing step, we observed that the

1https://rekt.news/
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SMT formulas generated by CertoraProver were faster to solve and therefore lead to a significant
reduction in solver time and fewer timeouts.

Claims. We make the following three claims in this paper.
C1 The proposed memory splitting transformation is crucial for mitigating SMT timeouts when

verifying EVM bytecode from real-world smart contract protocols.
C2 The memory analysis exposes bugs in many versions of the Solidity compiler.
C3 Prior work that uses pointer analysis to speed up SMT solving does not directly apply to

EVM bytecode.
Evidence. To support the claims stated above, we provide the following evidence.
E1 On a dataset of 229 verification tasks, we show that the memory splitting transformation

mitigates timeouts in 16 cases (i.e., the solver did not finish running without memory splitting)
and additionally speeds up SMT solving by up to 120× and 2.03× on average.

E2 As a result of the memory analysis backing the memory splitting transformation, we have
found 5 compiler bugs in different versions of the Solidity compiler.

E3 Similar ideas for speeding up SMT solving time have been explored in the context of other
programming languages with explicit allocation instructions (e.g., malloc in C, new in JVM
bytecode) [18, 58]. However, this model does not apply to the EVM: memory is simply an
unstructured, monolithic array of bytes. The entire (256-bit) address space is available to a
contract, and there is no traditional allocation instruction. In order to implement high-level
data structures such as dynamically- sized arrays, the Solidity compiler allocates blocks of
memory using a simple bump allocation scheme. Therefore, allocations of dynamically-sized
data structures appear to be nothing more than a sequence of ordinary memory accesses and
pointer arithmetic, complicating the application of existing techniques.

CertoraProver is an industrial tool regularly used by smart contract developers for specifying
and verifying high-level functional correctness properties of their programs. While most users
of CertoraProver are experts in blockchain protocol development and proficient in Solidity, few
are formal verification experts. Long verification times and timeouts are therefore particularly
undesirable for a tool like CertoraProver.

This paper presents a memory splitting rewrite and a memory analysis that enables it. We have
found that the rewrite is crucial for speeding up CertoraProver, making it suitable for use in this
domain. Overall, we make the following key contributions:
(1) A memory splitting transformation targeting EVM bytecode that leads to faster SMT solving

and fewer timeouts when verifying smart contracts.
(2) A new and practical memory analysis for EVM bytecode that guides the memory splitter.
(3) An implementation of both techniques in a verification tool, CertoraProver and an evaluation

on 229 real-world verification tasks from external users demonstrating that memory splitting
speeds up SMT solving by up to 120× and additionally mitigates 16 SMT timeouts.

(4) A summary of 5 compiler bugs we have found as a result of the memory analysis.

2 Background and Overview
This section gives an example of a Solidity program, a high-level property expressed in Cer-
toraProver’s specification language, and describes the end-to-end workflow of CertoraProver. It
also explains the key challenge encountered in naively generating VCs.

2.1 CertoraProver’s Workflow
Figure 1a (bottom) shows a Solidity program and Figure 1a (top) shows a high-level property (a
“rule” named allSame) of this contract in CertoraProver’s specification language. The Solidity
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Fig. 2. Workflow diagram of CertoraProver. CertoraProver compiles Solidity code using off-the-shelf compilers
(shown by solc) to generate EVM bytecode. Then, it converts the bytecode to a three-address representation
called TAC. it applies various transformations on the TAC. The memory splitting rewrite presented in this
paper is part of this phase. The specification (shown by.spec) is translated to TAC and function calls are
inlined. CertoraProver then generates the verification condition and sends it to off-the-shelf SMT solvers.

program consists of a single a "contract" (analogous to an object in object-oriented languages), C.
A struct, Stream is defined in C with two dynamically sized arrays, k1 and k2. The function init
instantiates the struct as s and initializes the arrays in memory (indicated by the keyword, memory
on line 6) to point to two new arrays shown by new uint[](sz) where sz is the size of the array.
On line 9 and line 10, index 0 of both arrays is set. The for loop goes over the rest of the indices in
both arrays and sets them as shown. Finally the function returns s.

In CertoraProver, specifications (pre- and post-conditions) are expressed in a declarative language.
The core features of this language are standard, similar to tools like Dafny [69]. In the rule allSame,
we first invoke the init function from the contract and then add a post-condition stating that for
all valid indices, the entries in the array s.k1 must be equal to i1.

Figure 2 shows the workflow CertoraProver follows to prove this property. First, CertoraProver
uses the Solidity compiler to generate the EVM bytecode of the contract. EVM bytecode targets the
EVM stack machine, which CertoraProver then converts to a register machine, called TAC (short
for three-address code). For this, CertoraProver follows the approach introduced by Vallée-Rai et al.
[95] in the Soot framework. A similar approach for decompiling EVM bytecode can be found in
other tools [21, 37, 54, 68, 86]. The memory analysis and the memory splitter this paper presents are
introduced at this phase in CertoraProver. Next, the specification is also compiled to TAC, followed
by inlining the function calls from the TAC of the Solidity program. Ultimately, CertoraProver uses
a standard algorithm [29] to compute the VC which it then sends to SMT solvers [30, 44].

2.2 The Problem and the High-Level Solution
Onemajor challenge with generating VCs lies in handling stateful memory load and store operations
that are part of EVM bytecode (and therefore also part of TAC). These operations are not directly
representable in an SMT encoding. Figure 3a shows a naive way to encode them—it illustrates how
the result of an MLOAD (memory load) operation at a pointer g can be translated into an expression
that case-splits over all of the preceding MSTORE operations that could have written to g.2

However, such a translation fails to scale in realistic programs (see Section 7). This is because the
translation assumes that any two pointers (that is, EVM memory array indices that are operands
to an MSTORE or MLOAD operation) may alias, leading to a blow-up in the number of cases that the
SMT solver needs to consider. If we can prove that two pointers must not alias, then the complexity
of the VCs significantly reduces. Figure 3b shows how we can apply facts learned from a memory

2The familiar reader will recognize this translation as instantiations of the read-over-write axioms [74].
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MSTORE j x

MSTORE i y

h := MLOAD g

−→𝑣𝑐

(define-fun h ((g Int)) Int

(ite (= g i)

y

(ite (= g j)

x

havoc_var)))

(a) Naive axiomatization

MSTORE j x

MSTORE i y

h := MLOAD g

𝑖 ≠ 𝑔
−−−→𝑣𝑐

(define-fun h ((g Int)) Int

(ite (= g j)

x

havoc_var))

(b) Simplification enabled by memory splitting

Fig. 3. (a) Example showing axiomatization of memory operations (using SMTLIB syntax to the right of the
arrow). MLOAD and MSTORE operations are ubiquitous and therefore this naive transformation fails to scale
both in terms of the number and size of such axioms. (b) CertoraProver’s memory splitter enables rewrites by
inferring facts like 𝑖 ≠ 𝑔. −→𝑣𝑐 refers to the VC generation process. havoc_var is an unconstrained value.

analysis to simplify this axiomatization: if we know that i is never equal to g, we can prune that
check, ultimately simplifying the resulting SMT query.
This is one of the key ideas that makes CertoraProver scale to real-world verification tasks: it

employs a new memory splitting transformation that allows it to generate these faster-to-solve
SMT queries. Even for the simple example program and property in Figure 1a, we found that when
running CertoraProver to verify the AllSame property, the memory splitting transformation sped
up the SMT solving time by 2×. As hinted above, the transformation itself is enabled by a novel
memory analysis that CertoraProver performs on the TAC program. The rest of the paper will
discuss this transformation and the novel memory analysis that enables it.

3 TAC and Its Translation to SMT-LIB
Before discussing the memory analysis and transformations that CertoraProver employs to speed
up smart contract verification, in this section we first provide a brief overview of how memory
is defined in the Ethereum virtual machine. We then fix a formalization of TAC to ground our
discussion. Finally, we sketch the basic translation from TAC to VCs whose validity imply the
correctness of the analyzed contract.

3.1 EVMMemory
The EVM is a stack machine where the stack can hold up to 1024 words, each 256 bits (32 bytes)
long. The EVM has two main notions of mutable “state” — (1) memory, a volatile form of storage
that is deleted at the end of each contract call, and (2) storage, which persists throughout the lifetime
of a contract’s deployment.3 Memory is byte-addressable, but load and store operations read and
write word-sized values, respectively. Storage addresses are not valid in memory (and vice versa),
and therefore the remainder of this paper only concerns itself with pointers to memory.

As the EVM does not expose memory allocation abstractions (such as malloc), compilers must
implement their own. The Solidity compiler allocates memory using bump-allocation. The compiler
uses a monotonically increasing free pointer, fp, to indicate the beginning of unused space in the
memory array. To allocate memory for an object during a contract call, the compiler first saves the
current value of the free pointer, increments the pointer by the size of the allocated object, and
then returns the saved value as the fresh pointer to the allocated memory. The memory address of
the free pointer is (by convention) the constant address 0x40 (in hexadecimal). A pointer, therefore,
is simply a memory index indicating the beginning of an allocated block. Accesses to values within
the allocated memory are achieved by pointer arithmetic, i.e., adding values to these special integers.
There is no scheme for freeing memory since contract calls are typically short-lived.

3EVM also has separate areas for calldata and for returndata that are temporary read-only locations holding information
passed to and returned from contracts respectively.
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Variables 𝑥 ∈ V Literals 𝑐 ∈ {0, 1}256 Labels 𝑙 ∈ L
Immediates 𝑖 ::= 𝑐 | 𝑥
Expressions 𝑒 ::= 𝑖 | 𝑥 [𝑖 ] | 𝑥 [𝑖 := 𝑖 ] | 𝑖 ⊕ 𝑖

Basic Instructions 𝐼𝑏 ::= 𝑥 ← 𝑒 | BRANCH𝑥 𝑙 𝑙
Memory and Storage 𝐼𝑚 ::= 𝑥 ← MLOAD𝑥 | MSTORE𝑥 𝑖

Instructions 𝐼 ::= 𝐼𝑚 | 𝐼𝑏
Labeled Instructions 𝑙𝑖 ::= 𝑙: 𝐼

Program 𝑃 ::= 𝑙𝑖∗

Fig. 4. Syntax for a subset of the TAC IR and the Control Flow Graph (CFG) definition. A label is a unique
identifier for each instruction in the CFG.

3.2 TAC
CertoraProver works on a three-address intermediate representation (IR) dubbed TAC, generated
by decompiling the EVM bytecode. The main purpose of the decompiler is to convert the EVM
stack machine into traditional register machine code.
Figure 4 shows a subset of the TAC language that is relevant to the contributions of this paper.

Immediates are constants or variables. A constant is a 256 bit bitvector, which is consistent with
the EVM. Note that a variable can represent an array or a scalar. Expressions include both binary
and unary operators that cover arithmetic expressions, logical expressions, and comparisons.
Expressions can also be array lookups and updates. Importantly, expressions are not recursive since
this is a three-address representation. Instructions in TAC can be basic which includes assignments
and BRANCH, or they can be memory related: MLOAD and MSTORE. v ← MLOAD w reads 32 bytes of
memory starting at location w in to v. MSTORE l s writes s to memory from location l to l + 32.
The BRANCH instruction indicates control flow in case of conditionals. The control flow graph is
defined as a list of (label, instruction) pairs.
Figure 1b shows a simplified representation of the TAC code corresponding to the (bytecode

of) the body of the init method shown in Figure 1a. Recall that the free pointer’s value is always
stored at location 0x40 by the Solidity compiler. On line 1 the program first loads the value of the
free pointer to the register, s. The pointer for each of the arrays of the stream are of size 0x20 (i.e.,
32) bytes. The free pointer is therefore bumped on line 2 by adding 2 times 0x20, i.e., 0x40 to the
current position of the free pointer in s. The new value is stored at 0x40. Note that, like C structs,
the location/offset of s also the location of the first field of s, k1.
The Solidity compiler reserves the 32 bytes starting at location 0x60 to always hold zero; this

magic constant 0x60 is used as the default value for dynamic arrays.4 Therefore, line 5–line 7
initializes the two arrays in the struct in s— first, the program initializes the first array by storing
0x60 in s (which, recall, is also the location of the first field), then computes s_k2 to point to the
location of the second field, and finally stores 0x60 at the location s_k2. Next, starting at line 9,
allocation of s.k1 occurs—the position of the free pointer is loaded into k1, where the value of
the size of the array sz is stored; k1_elems is computed to allocate sufficient memory for all sz
elements (0x20 for each); k1_len is computed to represent the total memory required for s.k1
which includes an additional 0x20 bytes for storing the size of the array itself; the free pointer is
bumped and stored again at 0x40 and finally the location k1 of the freshly array is stored at s. A
similar set of operations also happen for s.k2 from line 17 onwards.
The TAC programs are encoded in SMT-LIB by first replacing all memory and storage instruc-

tions (𝐼𝑚) with basic instructions (𝐼𝑏 ) by applying Simplify(𝑖) : 𝐼𝑚 → 𝐼𝑏 which we define as:

4https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html
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Simplify(𝑖 ) =

{
𝑥 ← 𝑀 [𝑝 ] 𝑖 ≡ 𝑥 ← MLOAD𝑝

𝑀 ← 𝑀 [𝑝 := 𝑣 ] 𝑖 ≡ MSTORE𝑝 𝑣

Where𝑀 ∈ V is a distinguished variable that explicitly models memory as an array.

Example 3.1. We show the TAC for the example in Figure 1b after going through Simplify. Here,
tacM represents the distinguished variable that models memory.

1 s := MLOAD 0x40

2 fp0 := 0x40 + s

3 MSTORE 0x40 fp0

4
5 MSTORE s 0x60

6 s_k2 := 0x20 + s

7 MSTORE s_k2 0x60

8 ...

⇝

1 s := tacM [0x40]

2 fp0 := 0x40 + s

3 tacM := tacM [0x40 := fp0]

4
5 tacM := tacM [s := 0x60]

6 s_k2 := 0x20 + s

7 tacM = tacM [s_k2 := 0x60]

8 ...

Next, the resulting program, which contains only basic instructions, is transformed into static
single-assignment (SSA) form [43] and finally translated into SMT-LIB following Barnett and Leino
[29]’s algorithm for computing the weakest precondition. In particular tacM (and its SSA renaming)
is translated as SMT-LIB array.

4 Analysis Walk-through
Now that we have described how memory operations in TAC are simplified (using Simplify) and
the TAC is translated to SMT-LIB, we explain the memory analysis in CertoraProver that guides
the memory splitting transformation to generate faster-to-solve SMT-LIB formulae. The memory
analysis is crucial for the memory splitter and is one of the key contributions of this paper.

Since EVMdoes not have any special instructions that indicatememory allocations, CertoraProver
must compute which allocated objects each memory pointer may point to. Pointers that point to
disjoint sets of objects do not alias: this aliasing information is then used to optimize the translation
to SMT as mentioned previously and evaluated in later sections. In general, programs may allocate
an unbounded number of objects. Thus, pointer analyses typically approximate the set of allocated
runtime memory locations by a set of abstract locations [25, 91]. In languages like Java, the source
code location corresponding to the new keyword can serve as the abstract location corresponding
to the memory addresses returned by that particular allocation.
In the absence of any such primitives, CertoraProver performs a novel allocation analysis,

which computes both the set of abstract locations and the program points where allocations occur.
This analysis identifies allocations by identifying increments of the free pointer. As described
earlier, Figure 1b shows the TAC corresponding to the allocation and initialization of s, s.k1, and
s.k2. CertoraProver identifies the abstract locations created at: (1) line 1, corresponding to the
allocation of the struct s; (2) line 9, corresponding to the allocation of the array s.k1; and (3) line 17,
corresponding to the allocation of the array s.k2. After identifying the allocations, CertoraProver
constructs a points-to graph—for each pointer, it computes the set of abstract locations that it may
refer to. For each abstract location, CertoraProver computes the type of the stored object (such
as struct or an array), and the abstract locations that may be referenced by the stored object.

Computing these may-alias sets of abstract locations is a standard abstract interpretation-based
pointer analysis. However, in EVM, pointer arithmetic is unrestricted: unlike languages such as C,
using pointer arithmetic to extend a pointer beyond the bounds of the referenced object is a well
defined operation. Thus, to ensure the soundness of the heap typing information, CertoraProver
must check the following conditions:

R1 Each object is initialized correctly, establishing the validity of the points-to information
R2 Memory operations are within bounds (thus maintaining the correctness of the abstraction).
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1 // H = 𝑙𝑠 ↦→ Ŝtr ( [0 ↦→ ArrPtr (𝑙𝑘1 ), 32 ↦→ ArrPtr (𝑙𝑘2 ) ] ), 𝑙𝑘1 ↦→ Ârr (INT), 𝑙𝑘2 ↦→ Ârr (INT)
2 // N = v ↦→ ⟨[0, MAX_INT], ∅⟩
3 // P = s ↦→ B(𝑙𝑠 , 64)
4 solidity_guard:

5 kptr := MLOAD s // 𝑃 = . . . , kptr ↦→ ArrPtr (𝑙𝑘1 )
6 length := MLOAD kptr // 𝑁 = . . . , length ↦→ ⟨[0, MAX_INT], {LenOf(kptr⟩} )
7 ok := i < length

8 BRANCH ok write_k1 revert

9
10 // N = . . . , 𝑖 ↦→ ⟨[0, MAX_INT], {SafeIndOf(kptr⟩} )
11 write_k1:

12 elem_off := 0x20 * i // N = . . . , elem_off ↦→ ⟨[0, MAX_INT], {SafeElemOf(kptr⟩} )
13 array_off := 0x20 + elem_off // N = . . . , array_off ↦→ ⟨[0, MAX_INT], {SafeArrOffset(kptr⟩} )
14 elem_ptr := kptr + elem_off // P = . . . , elem_ptr ↦→ E (𝑙𝑘1,⊥, kptr)
15 MSTORE elem_ptr v

Fig. 5. Simplified TAC code derived from the EVM corresponding to the write of s.k1[i] at line 12. Relevant
abstract state is shown as comments. Ellipses “...” indicate that the abstract state component that follows is
an update to the preceding state. Components are omitted if they do not change relative to the previous state.

Requirement R1 is handled by an initialization analysis that finds the program locations
where a newly allocated object has been completely initialized. The initialization code is generated
by the Solidity compiler, and is unrelated to any initial values that the user may specify. Crucially,
the initialization analysis identifies a (unique) program location after which it is safe to perform
reads from a newly allocated object. Like in C, a freshly allocated block of memory may contain
arbitrary values. If fields of a freshly allocated object are read before being initialized with coherent,
well-typed values, points-to relationships become difficult or impossible to infer; any apparent
pointer value might actually be junk read from memory. In other words, the initialization analysis
guarantees that any reads of an object’s fields yield type-correct values. This strongly-typed heap
property is crucial for the precision of the points-to analysis that follows. If the initialization
analysis succeeds, the points-to analysis proceeds to build the points-to graph. The analysis is
an abstract interpretation whose domain is a reduced product of numerical (N), pointer (P), and
abstract heap (H) domains. The numeric store N maps variables to a numeric abstraction, P maps
variables to abstract pointer values, and H maps abstract locations to abstract heap values.

We now return to the example in Figure 1b to show how CertoraProver proves array accesses
in Figure 1a to be safe. Figure 5 shows the TAC representation of the write to s.k1 (the access
s.k1[i] at line 12 of Figure 1a). The Solidity compiler inserts its own bounds checks before array
accesses. This is why we see the block labeled solidity_guard, which performs the check. Figure 5
is annotated with the abstract state on entry to each block, and after each command. For ease of
exposition, we use a simplified presentation of our analysis formalization (Section 5), and omit
abstract values that are not relevant (or are uninteresting) to the discussion.
On entry to solidity_guard, the abstract heap has three mappings (line 1). The location 𝑙𝑠

stores an (abstract) struct value with two fields: one (at word offset 0) is ArrPtr (𝑙𝑘1), a pointer to an
array at abstract location 𝑙𝑘1, and the other (at word offset 32) is ArrPtr (𝑙𝑘2), a pointer to an array
at abstract location 𝑙𝑘2. The abstract locations 𝑙𝑘1 and 𝑙𝑘2 both contain arrays of integers. N includes
mapping for v (the value that will eventually be stored to s.k[i]), ⟨[0, MAX_INT], ∅⟩) (line 2).
The numeric abstract value ⟨[𝑙𝑏,𝑢𝑏], 𝑄⟩ denotes integers whose values are bounded by the

interval [𝑙𝑏,𝑢𝑏], and that are additionally refined by 𝑄 , a set of qualifiers, which are predicates
about the value to which it is attached. In this case, the complete interval [0, MAX_INT] and empty
qualifier set indicate only that v is some integer, (i.e., nothing else is known about it). P includes
𝑠 ↦→ B(𝑙𝑠 , 64), which says that s points to the beginning of (that is, field 0 of) a struct at abstract
location 𝑙𝑠 . The second component indicates that the total size of this struct is 64 bytes. (line 3).
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1 s := tacM [0x40]

2 fp0 := 0x40 + s

3 tacM := tacM [0x40 := fp0]

4 s2 = 0x20 + s // pointer to s.k2

5 // initially both pointers point to zero slot

6 tacM := tacM [s : (s + 0x20) := 0x60]

7 tacM := tacM [s2 : (s2 + 0x20) := 0x60]

8
9
10
11
12 // allocating for the array s.k1

13 k1 := tacM [0x40]

14 tacM := tacM [k1 : (k1 + 0x20) := sz]

15 k1_elems := 0x20 * sz

16 k1_len := 0x20 + k1_elems

17 fp1 := k1 + k1_len

18 tacM := tacM [0x40 := fp1]

19 /*

20 computing index 0 of s.k1

21 First entry is the size of s.k1,

22 so we add 0x20 to get index 0.

23 We then initialize all elements of s.k1 to 0

24 */

25 k1_idx_0 = k1 + 0x20

26 tacM := tacM [k1_idx_0 : k1_idx_0 + k1_elems := 0]

27 tacM := tacM [s : (s + 0x20) := k1]

28 // s.k1[0] = i1;

29 s_k1_0 = 0x20 + tacM [s]

30 tacM := tacM [s_k1_0 : (s_k1_0 + 0x20) := i1]

31
32
33
34
35
36 // same treatment for k2 as shown for k1.

37 k2 := tacM [0x40]

38 tacM := tacM [k2 : (k2 + 0x20) := sz]

39 k2_elems := 0x20 * sz

40 k2_len := 0x20 + k2_elems

41 fp2 := k2 + k2_len

42 tacM := tacM [0x40 := fp2]

43 k2_idx_0 = k2 + 0x20

44 tacM := tacM [k2_idx_0 : k2_idx_0 + k2_elems := 0]

45 tacM := tacM [s2 := k2]

46 // s.k2[0] = i2;

47 s_k2_0 = 0x20 + tacM [s2]

48 tacM := tacM [s_k2_0 : (s_k2_0 + 0x20) := i2]

1 s := tacM [0x40]

2 fp0 := 0x40 + s

3 tacM := tacM [0x40 := fp0]

4 s2 = 0x20 + s // pointer to s.k2

5 // initially both pointers point to the zero slot

6 tacMk1 := tacMk1 [s : (s + 0x20) := 0x60]

7 tacMk2 := tacMk2 [s2 : (s2 + 0x20) := 0x60]

8 /*

9 memory is partitioned for each array and

10 within each array, partitioned twice again.

11 tacM1_1 is the region for the length of s.k1

12 */

13 k1 := tacM[0x40]

14 tacM1_1 := tacM1_1 [k1 : (k1 + 0x20) := sz]

15 k1_elems := 0x20 * sz

16 k1_len := 0x20 + k1_elems

17 fp1 := k1 + k1_len

18 tacM := tacM [0x40 := fp1]

19 /*

20 tacM1_2 is the region for the elements of s.k1

21 tacMk1 is now k1 which points to s.k1

22 We show simplified code for

23 0 initialization of all elements.

24 */

25 k1_idx_0 = k1 + 0x20

26 tacM1_2 := tacM1_2 [k1_idx_0 : k1_idx_0 + k1_elems := 0]

27 tacMk1 := tacMk1 [s : (s + 0x20) := k1]

28 // s.k1[0] = i1;

29 s_k1_0 := 0x20 + tacMk1[s]

30 tacM1_2 := tacM1_2 [s_k1_0 : (s_k1_0 + 0x20) := i1]

31 /*

32 Same treatment below for k2 as shown for k1

33 but in a different partition of the memory

34 shown by tacM2_1 (length of s.k2) and

35 tacM2_2 (elements of s.k2).

36 */

37 k2 := tacM[0x40]

38 tacM2_1 := tacM2_1[ k2 : (k2 + 0x20) := sz]

39 k2_elems := 0x20 * sz

40 k2_len := 0x20 + k2_elems

41 fp2 := k2 + k2_len

42 tacM := tacM [0x40 := fp2]

43 k2_idx_0 = k2 + 0x20

44 tacM2_2 := tacM2_2 [k2_idx_0 : k2_idx_0 + k2_elems := 0]

45 tacMk2 := tacMk2 [s2 : (s2 + 0x20) := k2]

46 // s.k2[0] = i2;

47 s_k2_0 := 0x20 + tacMk2[s2]

48 tacM2_2 := tacM2_2 [s_k2_0 : s_k2_0 + 0x20 := i2]

Fig. 6. Simplified TAC code without memory splitting rewrite (left) and with memory splitting rewrite (right).
To keep the program simple and easier to read, we use ranges (e.g., tacM1_1 := tacM1_1 [k1 : (k1 +
0x20) := sz]) to indicate that from offset k1 to k1 + 0x20, the value of sz is written to memory. Notice
that the code on the left is essentially what we obtained by applying Simplify to the code shown in Figure 1b.

For requirement R2, the analysis uses path information to prove that the memory accesses
maintain the consistency of the points-to abstractions. The TAC program first reads the length of
s.k1 into length. The first MLOAD instruction reads the k1 field by “dereferencing” s, which, as P
indicates above, is the first field of the struct at 𝑙𝑠 . The pointer state is updated to now also include
kptr ↦→ ArrPtr (𝑙𝑘1), which indicates it is an array pointer to 𝑙𝑘1 (line 5); that is, the address held in
the first field of the object at 𝑙𝑠 . Next, CertoraProver assigns to length the abstract numeric value
⟨[0, MAX_INT], {LenOf(kptr⟩) (line 6). The pointer state indicates that kptr is an array pointer, a
read from which (via the MLOAD) is always considered safe because as explained in Section 3.2, this
is a pointer to the beginning of the array which stores the length of the array.
Since length is assigned by reading an array length, its abstract value includes the qualifier

LenOf(kptr), indicating that is known to be the length of the array pointed to by kptr. The

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 356. Publication date: October 2024.



356:10 Shelly Grossman, John Toman, Alexander Bakst, Sameer Arora, Mooly Sagiv, and Chandrakana Nandi

guard block ends by jumping to write_k1 only if i is less than length. Due to the comparison
against length, whose abstract value includes LenOf(kptr), CertoraProver generates the qualifier
SafeIndOf(kptr) for i in the numeric store, N (line 10). The SafeIndOf qualifier indicates that
the qualified integer (that is, i) is known to be a safe logical index of kptr; that is, i must be less
than kptr’s length which is exactly what the path condition implies. Similar reasoning justifies
the generation of SafeElemOf(kptr) for elem_off at line 12 (i.e., elem_off is the byte offset of
element i, since each element is 0x20 bytes wide), and SafeArrOffset(kptr) at line 13 (recall
from Section 2.1 that the first word of the array object is the array’s size, so the first element is
offset by 0x20 bytes).

Adding a value with the qualifier SafeArrOffset(kptr) to the beginning of the object pointed
to by kptr produces the abstract value E(𝑙𝑘1,⊥, 𝑘𝑝𝑡𝑟 ) (line 14). This abstract value represents a
valid array element pointer for the array with abstract location 𝑙𝑘1, and the variable which points
to the start of the array is kptr. The ⊥ component is used for proving certain accesses safe, and
is explained in Section 5.3. As elem_ptr is a safe element pointer, CertoraProver finally checks
that the type of v matches the element type of the referenced array, i.e., INT. With this final check,
CertoraProver concludes that the write is safe and does not violate memory safety.

Once the abstract interpretation is complete, CertoraProver uses its results to generate must-not-
alias facts as follows. The abstract pointer store, P, maps each pointer to a set of abstract locations.
Suppose p references locations L and q references locations M. Then, if the intersection of L and M
is empty, p and q must not alias, and CertoraProver may deduce that p != q. CertoraProver passes
these facts to a downstream program transformation pass, called memory splitting rewrite which
then uses the facts to split memory operations when generating VCs. Returning to our example in
Figure 1b, CertoraProver concludes that the accesses to s, s.k1, and s.k2 correspond to disjoint
memory regions. This allows the memory splitter to rewrite the TAC by separating the memory
operations on the two arrays to use two separate array variables (Section 3). Without the memory
analysis, the memory splitter cannot soundly split these memory operations.
Figure 6 shows a simplified version of the TAC without the memory splitting transformation

(left) and with the memory splitting transformation (right). The program on the left shows that
without memory splitting, writes to both s.k1 and s.k2 use the same memory variable tacM. The
program on the right shows that the memory analysis has split memory into four parts—tacM1_1
represents an array containing the size of s.k1, tacM1_2 represents an array containing the
k1_elems elements of s.k1 (initialized to 0 on Line 26), tacM2_1 represents an array containing
the size of s.k2, and tacM2_2 represents an array containing the k2_elems elements of s.k2
(initialized to 0 on Line 44). The free pointer, fp is updated as shown in the figure. tacMk1 and
tacMk2 are two memory variables that store pointers to the two arrays. Initially both point to the
zero slot (0x60). Later, they are updated to point to the start of the two arrays, k1 and k2. For s.k1,
Line 29-30 shows the split TAC code corresponding to the Solidity statement shown on Line 28
that uses tacMk1 and tacM1_2 (similarly for s.k2).
Ultimately, splitting the memory operations to disjoint arrays lowers the burden on the SMT

solvers which would otherwise have to either infer these facts (leading to slowdowns) or assume
that all memory accesses happen on a single giant array of bytes (leading to imprecision).

5 Detailed Description of the Analyses
We now describe the analyses in more detail. Recall that CertoraProver performs a memory analysis
in order to enable memory splitting that speeds up SMT solving in the context of smart contract
verification. To achieve this, the analysis computes a memory model of the input TAC program.
This comprises three steps: an allocation analysis to detect new allocations, an initialization analysis
to detect locations that are safe to read, and ultimately a pointer analysis that produces a points-to
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Fig. 7. Illustrating the memory layout after the Solidity compiler allocates memory for the two struct arrays
in the program in Figure 1a. All numbers are in hexadecimal. The slot 0x60 is the “zero slot” as per Solidity’s
documentation. 0x40 stores the value of fp. The first element for both s.k1 and s.k2 is sz which is the size
of the array. Each element needs 32 (0x20) bytes.

graph whose nodes summarize possibly many memory locations. This points-to graph is the input
to the memory splitting transformation.

The following sections describe the steps of the following high-level algorithm of CertoraProver:

evmAnalyzer (cfg) =
letW = runAllocationAnalysis(cfg) in
let I = runInitializationAnalysis(cfg,W) in
let P̂ = runPointsToAnalysis(cfg,W,I) in
memSplit (cfg, P̂)

5.1 Allocation Analysis: Marking New Allocation Points
In order to construct a partitioned model of memory, CertoraProver first classifies and labels
memory into disjoint regions. At a high level, each region will denote (possibly many) contiguous
blocks of memory: in a language like C these would be the blocks returned by malloc. However,
due to the absence of such a memory allocation abstraction, CertoraProver performs an allocation
analysis to identify the points where memory is reserved for later use by the program. In addition,
the analysis classifies each allocation with a type for the allocation: whether the allocated object is a
fixed-size block (e.g., a struct) or a dynamically-sized object (e.g., an array). While this classification
is made heuristically, the later analyses guarantee the memory safety of the program with respect
to the output of the allocation analysis. In the remainder of this section we will take a closer at the
various parts of the analysis.

fp1 := MLOAD fp

r1 := fp1

MSTORE r1 ...

fp2 := MLOAD fp

r2 := fp2

MSTORE r2 ...

MSTORE fp ...

Fig. 8. Distinct reads
observing the same fp
(0x40) value.

5.1.1 Abstract Allocations. The allocation analysis partitions the heap into
a set of abstract locations: each abstract location serves as a unique name for
the set of memory addresses allocated at a particular program location. As
different executions of the programmay visit the same allocation site multiple
times, an abstract location (which is static) may summarize a statically-
unknown number of such address blocks.

We define abstract allocation as program points that performs an allocation.
An abstract allocation is in 1-to-1 correspondence with an abstract location.
The key invariant of the allocation analysis therefore is that distinct allo-
cation points (and hence abstract locations) refer to disjoint memory
locations. The Solidity compiler allocates objects by inlining a simple bump
allocation scheme utilizing a distinguished free pointer, which we refer to
as fp. To allocate a pointer to 𝑘 bytes, the program first saves the value of fp.
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This serves as the value of the pointer, since fp points to the first “unreserved” memory address.
The program updates fp to fp + 𝑘 , reserving 𝑘 bytes. Thus, the next allocated address (a read of
fp) is disjoint from the previous allocation. At first blush, it would seem that each read of fp could
serve as a potential abstract allocation point in the program. However, it is not the case that every
read of fp yields a distinct value— during the course of a single allocation, fp may be read multiple
times: each read may thus not correspond to a separate allocation.
In the TAC snippet in Figure 8, treating the two distinct reads of fp (i.e., r1 and r2) as two

different abstract locations is incorrect because the two reads observe the same value of fp. Dually,
conflating two reads of fp which we know will always observe different values leads to precision
loss by grouping together distinct memory into a larger partition.
Thus, when identifying abstract locations, it is critical to precisely group together families of

reads that may read the same value of fp, while separating reads that must not read the same value.

5.1.2 Read Numbering. To identify free pointer reads that must observe the same value, our analysis
first assigns a unique integer to each update to fp. We denote this domain of numbers using NW,
and will denote the number assigned to a free pointer write at 𝑙 with NW𝑙 . Figure 9 shows this
algorithm. It takes the control flow graph of the TAC program (cfg) as input and iterates over all
the instructions in all the blocks to assign NW𝑙 to updates of fp (checked by cmd.isFpUpdate()).

def numberWrites (cfg):

number = 0

nws = {}

blocksToNumber = {}

for block in cfg.blocks:

for cmd in block.cmds:

if (cmd.isFpUpdate()):

nw[cmd.l] = number++

for f in dominanceFrontier[block]:

if (f not in blocksToNumber):

blocksToNumber[f] = number++

return (blocksToNumber, nws)

Fig. 9. Algorithm for assigning each fp update a unique
number.

Then, based on this initial assignment, every
program point is annotated with its reaching
free-pointer number,NR ∈ NW, using a Static
Single Assignment (SSA) scheme [43]. We treat
each update of the free pointer as a write to a
synthetic variable, and compute for each pro-
gram point the fp update number that reaches
it. We denote the NR number at a given pro-
gram label 𝑙 byNR𝑙 . After this numbering, two
reads at program points 𝑙 and 𝑙 ′ with the same
value of NR𝑙 and NR𝑙 ′ for which there does
not exist an intervening writemust observe the
same value of fp (from the assumed correctness
of the SSA-numbering). Conversely, any two
pointers with the sameNR may alias with one
another.

However, two reads with different values ofNR𝑙 may not necessarily observe different values of
fp. Figure 10 illustrates this—since only one of the paths includes a write the final read to p2 will
have a different read numbering from the read to p1, even though there is potentially an execution
where the write is skipped, and hence an execution where the two reads yield the same result.

The analysis therefore checks the definite-write property—every read of fp must be followed by
a single, unique write without any intervening updates to NR. In other words, any manipulation of
the free pointer must be confined to a region of code that must have the same NR. This property
ensures that reads of distinct values have distinct read numberings, and thusNR by itself is a sound
basis for abstract locations 𝐴. These reaching free-pointer numbers form the basis for abstract
locations in the points-to analysis (Section 5.3).

5.1.3 Classifying Abstract Allocations. For statically-sized objects (i.e., structs or statically sized
arrays) fp is incremented by a simple constant. However, dynamically sized objects (i.e., arrays) are
allocated using multiple instructions (Figure 12). Recognizing these patterns for each allocation is
crucial to distinguishing between arrays and structs. For the purposes of our formal development
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CertoraProver identifies the following patterns of allocations: (1) constant blocks (𝐶𝐵(𝑘)), are for
statically sized arrays or structs, where fp is incremented by a statically known, constant amount
𝑘 , (2) dynamic blocks (𝐷𝐵), is for arrays allocated with new and an explicit size argument.5 The
Solidity compiler generates code that allocates the number of bytes necessary to hold the requested
number of array elements (plus the length of the array) and increments fp by that amount. Figure 7
shows the memory layout for our running example in Figure 1a. In this example, the two arrays
represent 𝐷𝐵 and the struct represents a 𝐶𝐵(𝑘 = 2).
CertoraProver recognizes these allocation patterns with a lightweight pattern matching over

the TAC code that updates the free pointer. If CertoraProver fails to classify an update of the
free pointer according to one of the above patterns, the analysis pipeline returns the trivial result.

block0:

cond := ...

BRANCH cond block1 block2

block1:

p1 := MLOAD fp

JUMP block3

block2:

MSTORE fp ...

JUMP block3

block3

p2 := MLOAD fp

Fig. 10. Justification for the
definite-write property. Since fp
(0x40) is written in one branch
of the conditional, the NR num-
ber at the second load to p2 will
be different from the load p1, de-
spite these two values in fact be-
ing equal. JUMP ID is syntactic
sugar for BRANCH T ID ID.

5.1.4 The Allocation Analysis. The analysis itself computes the
fp reads that serve as allocation points, checks that they satisfy
the definite-write property, and associates with each an abstract
location. For every program point, CertoraProver’s allocation anal-
ysis tracks abstract allocations,W, as the analysis fact. We define
W = L → 𝐴, whereL is set of all instruction labels and𝐴 is the set
of all abstract locations. While the definite-write property means
that the NR of an fp read by itself would be a sound choice for an
abstract location, 𝐴, this would be imprecise, as it can conflate log-
ically distinct allocations that have the sameNR (e.g., two distinct
allocations in different branches of a conditional). We therefore
use the pair of NR, and the number of the definite-write (NW)
together as part of𝐴. As Section 5.1.3 described, the allocation anal-
ysis collects allocation patterns. This pattern information (GR) is
also part of 𝐴. This choice of including GR in 𝐴 gives rudimentary
type information for memory pointers; based on the pattern of
writes identified in the first phase of this analysis, we can deduce
whether the pointer is for an array (a dynamically-sized block or
𝐷𝐵), or a struct (a block of 𝑘 words, or 𝐶𝐵(𝑘)). Therefore, an ab-
stract location is defined as: 𝐴 = NR × NW × GR, where GR
= {𝐶𝐵(𝑘), 𝐷𝐵}.

Figure 11 shows the core flow functions for this allocation anal-
ysis. It states that the abstract domain Alloc is a sum-type: it is (1)
either ⊤ (the trivial result), (2) (𝔓(𝑉 ) × NR ×𝔓(L) ×W) (used

during an allocation window), or (3) outside of allocation windows, a mapping of fp reads to inferred
abstract locationsW. The join on Alloc is strict: if there are different results for 𝑙 inW, or different
sets of free-pointer derived variables, the result is simply ⊤. We explain these in detail below.
The core analysis occurs during allocation windows. During these sections of the program, the

analysis uses an elaborated allocation window state. This state consists of the set of variables known
to be derived from the current value of the free pointer (𝔓(𝑉 )), the reaching free-pointer write
number of the current window NR, the free pointer read labels that have been observed so far
during the allocation window (𝔓(L)), and the accumulated results of already classified free pointer
reads (W). The analysis detects that an allocation window has “opened” when it encounters a free
pointer and it is not already tracking a window and has not yet failed with the trivial result (the first
branch of the MLOAD(fp, dest) case). The analysis then records the result of the free pointer read in
5Our implementation also supports other allocation patterns like byte arrays and strings which we omit for space reasons.
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flow : 𝑖𝑛𝑠𝑡𝑟 → Alloc → Alloc Alloc : ⊤ + (𝔓(𝑉 ) × NR × 𝔓(𝐴) × W) + W W : L ↦→ 𝐴

flowJ𝑀𝐿𝑂𝐴𝐷 (fp, dest ) ; 𝑙 ′K(Alloc) =


({dest},NR𝑙 , {𝑙 },W) Alloc ≡ W
(𝔭𝑉 ∪ {dest}, 𝑛, 𝑟 ∪ {𝑙 },W) Alloc ≡ (𝔭𝑉 , 𝑛, 𝑟,W) ∧ 𝑛 = NR𝑙
⊤ o.w.

flow Jvar ← exp; 𝑙 ′K(Alloc) =



Alloc Alloc ≡ W ∨ Alloc ≡ ⊤
(𝔭𝑉 \ var, 𝑛, 𝑟,W) Alloc ≡ (𝔭𝑉 , 𝑛, 𝑟,W) ∧ 𝑛 = NR𝑙 ∧

FV(exp) ∩ 𝔭𝑉 = ∅
(𝔭𝑉 ∪ {var }, 𝑛, 𝑟,W) Alloc ≡ (𝔭𝑉 , 𝑛, 𝑟,W) ∧ 𝑛 = NR𝑙 ∧

∀𝑣 ∈ (FV(exp) ∩ 𝔭𝑉 ) .exp > 𝑣

⊤ o.w.

flow J𝑀𝑆𝑇𝑂𝑅𝐸 (fp, val) ; 𝑙 ′K(Alloc) =


W ∪ {𝑙 ↦→ (𝑛,NW𝑙 , GR) |𝑙 ∈ 𝑟 } Alloc ≡ (𝔭𝑉 , 𝑛, 𝑟,W) ∧ NR𝑙 = 𝑛 ∧

GR = classify (𝑙 ) ∧ val ∈ 𝔭𝑉
⊤ o.w.

Fig. 11. Selected flow functions, flowJ·K, for CertoraProver’s allocation analysis. The dataflow fact here is the
allocation information,W. exp represents expressions from TAC. 𝑙 is the label of the current statement.

the singleton set {𝑑𝑒𝑠𝑡}, seeds the set of (as yet) unclassified free pointer with the label of the read,
and records the NR of the current read. If there is already an open window (the second case), the
allocation analysis checks that the NR number has not changed since the window opened (the
NR𝑙 = 𝑛 comparison in the second). If it has not, then the sets of free pointer derived variables and
free pointer reads are updated accordingly. Otherwise, the analysis immediately returns the trivial
result, e.g., if NR𝑙 is different from the NR number recorded in the allocation window state.
Now we discuss the variable assignment case in Figure 11 (var← 𝑒𝑥𝑝). Outside of allocation

windows, the allocation analysis does not consider variable assignments. However, it is crucial that
the analysis accurately tracks the set of all variables that must be derived from the free pointer.

r1 = MLOAD fp

r2 = r1 + 0x20 // 0x20 = 32 in decimal

r3 = l * 0x20

r4 = r2 + r3

MSTORE fp r4

Fig. 12. Allocation of 𝐷𝐵 is spread across multiple
TAC instructions (generated from EVM bytecode, Sec-
tion 3.2). Here, we showmemory allocation for an array
which updates fp as explained in Section 3.2: fp = fp
+ 0x20 + l * 0x20.

If the RHS of the assignment does not men-
tion any variables that are definitely derived
from the free pointer (shown by the formula
FV(exp) ∩ 𝔭𝑉 = ∅ in Figure 11), the analysis
effectively ignores the LHS of the assignment
(killing it from the set if it was present). If the ex-
pression (exp) mentions any variables derived
from the current incarnation of the free pointer
and must always return a value larger than all
such variables (∀𝑣 ∈ (FV(𝑒𝑥𝑝)∩𝔭𝑉 ).𝑒𝑥𝑝 > 𝑣)
then the left hand side of the assignment is
added to the set of free pointer derived vari-
ables. In any other case, e.g., the expression

decreases a free pointer derived value, or the NR number is different from the current window, the
analysis conservatively gives up.

The final piece of the allocation analysis occurs on an update of the free pointer (the MSTORE(fp,
val) case). If the NR of the write location6 matches that of the current window, then the analysis
has reached a free pointer write without any intervening change of the NR number. Thus, all
of the reads in 𝑟 must have observed the same value of the free pointer. We also ensure that the
value being written into the free pointer is itself derived from the current value of the free pointer
(𝑣𝑎𝑙 ∈ 𝔭𝑉 ); this check guarantees that the free pointer must never decrease. In addition, the classify
6The NR value change for a free pointer write applies to the dominated successors of the write, not the write itself.
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oracle classifies the “sort” of the allocation according to the patterns discussed above. With the write
of the free pointer, the allocation window is closed: the collected free pointer reads are added to the
set of classified locationW with the corresponding location 𝐿 = (𝑛,NW𝑙 ,GR). The remaining
flow functions are in Appendix A.

Referring back to the TAC program corresponding to Figure 1a shown in Figure 1b, the allocation
analysis identifies three distinct allocations: the allocation for the struct s on line 1 as a 𝐶𝐵(𝑘 = 2)
and the 𝐷𝐵 two allocations for s.k1and s.k2 and on line 9 and line 17. These correspond the three
allocations that happen from line 6-line 8 in Figure 1a.

5.2 Initialization Analysis
The goal of the initialization analysis is to find locations in the program where it is safe to read
freshly allocated memory. After each object allocation, the newly reserved block of memory holds
arbitrary data. The Solidity compiler follows all allocations with initialization code that fills the new
block with default values of the appropriate type. From the perspective of the source program (in
Solidity), the intermediate, uninitialized object is never visible: the allocation and initialization occur
atomically. However, at the bytecode level these freshly allocated objects exist in an uninitialized
state for some portion of program execution. We call the portion of the code where an object is
allocated but not fully initialized its “initialization window”.
It would be sound to treat all freshly allocated abstract objects in the pointer analysis as being

initialized with completely non-deterministic values. However, unless the the pointer analysis can
prove all writes in the Solidity-generated initialization code are strong updates which definitively
kill these non-deterministic values, the analysis suffers a major precision loss; any read from
memory must be treated as returning an arbitrary value.
Instead, CertoraProver has a special treatment for initializing objects (and pointers to them).

Following the conceptual model of Solidity, within their initialization window, objects are not yet
“live” and do not support all operations that fully initialized objects do. In particular, CertoraProver
forbids reads from initializing objects and their escape into the heap; upon detecting such behavior,
the analysis pipeline fails with a conservative result. However, this restriction is satisfied for all
code generated by the Solidity compiler.

The initialization analysis infers the initialization windows for each allocation. In particular, for
each (𝑙 ↦→ ℓ) ∈ W, this analysis detects the point in the program at which all portions of the freshly
allocated object have been written (relying on ℓ’s GR). Formally, the result of the initialization
analysis, is a mapping from 𝑙 ↦→ 𝑙𝑒𝑛𝑑𝑠 that indicates the point in the TAC CFG where initialization
of ℓ completes. If the analysis cannot detect that a unique point exists for any ℓ , the entire analysis
pipeline fails with a trivial result.
Referring back to our running example, for s allocated on line 6 in Figure 1a, the initialization

analysis over the TAC shown in Figure 1b will return the mapping { 1 ↦→ 7 } (for demonstration, we
use the line numbers in Figure 1b as labels).
If the initialization analysis succeeds, and given the restrictions on initializing object usage

described above, it is unnecessary to model the nondeterministic contents of freshly allocated
objects; all such programs are guaranteed to never observe these “junk” values, obviating including
them in our abstract state. The initialization window information is communicated to the pointer
analysis (see Section 5.3), which checks the usage restrictions in the initialization window.

5.3 Points-to Analysis
The final component of CertoraProver’s memory analysis is a pointer analysis. The pointer analysis
is implemented as a reduced product between two abstract interpretations: a pointer semantics
and a numeric bounds analysis. In this reduced product setting, the analyses exchange information
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P̂ ::= (𝑉 ↦→ 𝑣𝑝 ) × Ĥ Ĥ ::= 𝐴 ↦→ (Bool × O𝑚̂ ) × 𝜄 (𝐴) ↦→ O𝑚̃ O𝜇 ::= Ârr (ℎ⊥ ) | Ŝtr (𝜇 )

𝑚 ::= 𝑁 ↦→ ℎ 𝑚 ::= 𝑁 ↦→ ℎ⊥ ℎ ::= B(𝔓(𝐴), 𝑁 ) | ArrPtr (𝔓(𝐴) ) | INT Ĩ ::= 𝐴𝑟𝑟 (𝜄 (ℓ ), Bool) | 𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑁 )

𝑣𝑝 ::= ℎ | Ĩ | F (𝔓(𝐴), 𝑁+, 𝑁 ) | E (𝔓(𝐴), Bool,𝑉⊤ )

F(𝔭𝐴, 𝑘, 𝑛) ⊔ F(𝔭′𝐴, 𝑘, 𝑛) = F(𝔭𝐴 ∪ 𝔭′𝐴, 𝑘, 𝑛)
F(_, 𝑘, 𝑛) ⊔ F(_, 𝑘 ′, 𝑛′ ) = INT

B(𝔭𝐴, 𝑛) ⊔ B(𝔭′𝐴, 𝑛) = B(𝔭𝐴 ∪ 𝔭′𝐴, 𝑛)
B (_, 𝑛) ⊔ B(_, 𝑛′ ) = INT

E(𝔭𝐴, 𝑏, 𝑣) ⊔ E (𝔭′𝐴, 𝑏, 𝑣
′ ) = E(𝔭𝐴 ∪ 𝔭′𝐴, 𝑏, 𝑣 ⊔ 𝑣′ )

E (_, 𝑏, _) ⊔ E (_, 𝑏′, _) = INT

ArrPtr (𝔭𝐴 ) ⊔ ArrPtr (𝔭𝐴 ) = ArrPtr (𝔭𝐴 ∪ 𝔭𝐴 )

𝐴𝑟𝑟 (𝜄 (ℓ ), 𝑏 ) ⊔𝐴𝑟𝑟 (𝜄 (ℓ ), 𝑏 ) = 𝐴𝑟𝑟 (𝜄 (ℓ ), 𝑏 )

𝐴𝑟𝑟 (𝜄 (ℓ ′ ), 𝑏 ) ⊔𝐴𝑟𝑟 (𝜄 (ℓ ′ ), 𝑏′ ) = INT

𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 ) ⊔ 𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 ) = 𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 )

𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 ) ⊔ 𝑆𝑡𝑟 (𝜄 (ℓ ′ ), 𝑘 ′ ) = INT

Fig. 13. Pointer abstract domain and selected least upper bound (⊔) definitions.

to gain additional precision. For example, the numeric analysis tracks basic path conditions that
can establish an array variable definitely has non-zero length, or that a certain pointer is within
bounds. We now describe core components of the analysis.
Combined Domain. The abstract domain Ŝ is a product of the pointer state P̂ and numeric state N̂ :
Ŝ ::= P̂ × N̂ . Below we describe both components of this domain.

5.3.1 Pointer State, P̂. The pointer state itself (Figure 13) is a product of the abstract pointer
store (a partial mapping from program variables 𝑉 to store values 𝑣𝑝 ) and an abstract heap Ĥ . For
notational convenience, we will abbreviate 𝑠̂ (𝑣1) by 𝑝 (𝑣1) where 𝑝 is some pointer state ⟨̂𝑠, ℎ̂⟩.

Abstract Pointer Store (𝑉 ↦→ 𝑣𝑝 ). The abstract pointer store maps each variable to heap-storable
values ℎ, pointers to objects being initialized Ĩ, pointers to struct fields F (𝔭𝐴, 𝑘, 𝑘 ′), or the inter-
mediate result of pointer arithmetic E(𝔭𝐴, 𝑏, 𝑣⊤). We explain each of these below.
ℎ is a subset of values that are safe to store into the heap. These “heap” values can be pointers

to the beginning of a constant sized block of size 𝑘 (B(𝔭𝐴, 𝑘)), pointers to the beginning of an
array (ArrPtr (𝔭𝐴)), or integers INT. 𝔭𝐴 represents a set of abstract locations; specifically all abstract
locations that a field or value may point-to. It is an invariant that for each ℓ ∈ 𝔭𝐴, for some
B(𝔭𝐴, 𝑘), ℓ will map to an abstract struct object of size 𝑘 in all valid abstract heaps, and similarly
for ArrPtr (𝔭𝐴). Pointers to initializing objects are modeled in the store by initialization pointers Ĩ.
An array initialization pointer is represented by 𝐴𝑟𝑟 (𝜄 (ℓ), 𝑏). If 𝑏 is ⊥, then the array initialization
pointer points to the beginning of the array block (recall from Section 3.2 that this is the length field),
otherwise it points to within the data segment. An initialization pointer for a struct is represented
with 𝑆𝑡𝑟 (𝜄 (ℓ), 𝑘), where 𝑘 is the field number within the struct pointed to by the pointer. Recall
that the addresses being initialized 𝜄 (ℓ) are not sets: all initialization pointers must point to exactly
one value and hence admits strong updates. Initializing pointer objects are not heap values, thus
the pointer analysis forbids storing partially initialized objects from “escaping” into the heap.
F (𝔭𝐴, 𝑘, 𝑘 ′) is a pointer to a field of a struct objects whose location is abstracted by the set𝔭𝐴. 𝑘 is

the specific field number being pointed to, whereas 𝑘 ′ is the static size of the “parent” struct object.
Note that field pointers and base pointers with differences of referenced field or total size cannot be
mixed: as shown in the join rule for such values (Figure 13), attempting such a combination (e.g., at
a control-flow join) will effectively “kill” the pointer by turning it into an undistinguished INT.
The final components of the abstract values in the pointer state store are intermediate values

that exist during pointer arithmetic generated by the Solidity compiler. This is represented by
E(𝔭𝐴, 𝑏, 𝑣⊤). It is a pointer to the element portion of an array. 𝑣⊤ is the variable which holds a
pointer to the beginning of the entire array block or ⊤ if no such variable could be deduced (e.g.,
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due to precision loss from control-flow join). If 𝑏 is ⊤ then the pointer is known to be the beginning
of the element block (i.e., the location of element zero). This does not imply that the pointer is safe
to read, if the underlying array is empty then reading from such a pointer would observe arbitrary
data (the Solidity compiler bug mentioned in Section 7.2 was detected due to such an unsafe read).
On the other hand if 𝑏 is ⊥, then the pointer does not necessarily point to the beginning of the
element segment. However, it is an invariant that such an element pointer is safe to read.
Abstract Heap. The abstract heap summarizes the (possibly many) objects allocated at each

abstract location. This abstraction represents the high-level heap (Ethereum memory) implemented
via the bump allocator. Due to the initialization analysis (Section 5.2), we know that during the
points-to analysis all objects are either fully initialized or in the process of being initialized. Ĥ is
therefore a product of two (partial) maps. The first component𝐴 ↦→ (Bool×O𝑚) models the state of
fully initialized abstract objects. Each abstract address maps to a pair consisting of a summary flag
𝑏 and an initialized abstract object O𝑚 . The summary flag indicates whether or not this object is a
“summary” object, i.e., ⊤ if it summarizes the state of multiple concrete objects, or ⊥ if the abstract
object summarizes exactly one object. Summary objects only admit weak updates; however, as
non-summary objects represent the state of exactly one concrete instance they can support strong
updates (see the discussion of memory semantics below). The second component of the abstract
heap is a map from initializing addresses 𝜄 (𝐴) to initializing objects O𝑚 . Note that the initializing
addresses 𝜄 (𝐴) are not sets: all mapped objects in the initializing heap correspond to exactly one
concrete object, and hence admit strong updates.
Heap Objects. The definition of heap objects O𝜇 is parameterized by their initialization status:

either partially initialized (𝑚) or fully initialized (𝑚). Thus, each fully initialized object is either an
array Ârr (ℎ⊥) or fully initialized struct Ŝtr (𝑚). For simplicity, we model all elements of the array
with a single summary field,7 whereas for structs we use a partial mapping from sequential field
indices 0, . . . , 𝑘 to abstract values ℎ0, . . . , ℎ𝑘 ; the size of 𝑘 is fixed for each abstract location and is
determined by the (constant) amount by which the free pointer is bumped. Note that unlike structs,
we allow a special ⊥ value as the value of the summary field to model empty arrays.

Partially initialized arrays use the same representation as their fully initialized counterparts, as
an array with no information written into it yet can be represented with Ârr (⊥). The partially
initialized object representation for structs is Ŝtr (𝑚), where𝑚 is defined similarly to𝑚 but where
fields can be mapped to ⊥ (indicating they have not been initialized yet).

Memory Semantics. A select subset of the abstract semantics for handling memory operations is
shown in Figure 14 and the full treatment is in Appendix B.
Our memory analysis ensures that a program’s use of the heap is strongly typed—any cell in

memory with a reference type (a struct or an array) holds a pointer that has been allocated via the
bump allocator and has the corresponding shape. Specifically, at a write of a value ℎ into the heap,
our analysis compares the type of ℎ with the expected type of the heap location, and aborts if the
types are not compatible.

Thus, before introducing the semantics for memory writes, we first describe the coarse-grained
typing information inferred by the analysis pipeline. The 𝜏ℎ definition gives types for values that
appear in the heap, extended with top and bottom elements and it is equipped with a least upper
bound operator.8 The inductively defined T̂

ℎ
relation yields the type of a heap value ℎ in some

heap ℎ̂. With these definitions, we now describe the write function, which models a write of 𝑣2 to
the location pointed to by 𝑣1 by transforming the combined abstract state according to the effects
of the write. In the following, we will write 𝑥 [𝑦 ←↪ 𝑧] to mean replacing the value of 𝑦 with 𝑧 in
7While CertoraProver uses this simplification, our VC generation is precise w.r.t. different indices.
8These “types” only loosely correspond to the types in Solidity: they lack struct field names, and the type names are lost.
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𝜏ℎ ::= ⊥ | 𝜏ℎ array | int | [0 ↦→ 𝜏0
ℎ
, . . . , 𝑘 ↦→ 𝜏𝑘

ℎ
] | ⊤

T̂
ℎ
(ℎ) =


int ℎ = INT⊔{ T̂

ℎ
(ℎ′ ) array | ℓ ∈ 𝔭𝐴 ∧ ℎ̂ (ℓ ) = ⟨𝑏, (Ârr (ℎ′ ) ⟩ ∧ ℎ′ ≠ ⊥} ℎ = ArrPtr (𝔭𝐴 )⊔{ [0 ↦→ T̂

ℎ
(ℎ0 ), . . . , 𝑘 ↦→ T̂ℎ (ℎ𝑘 ) ] | ℓ ∈ 𝔭𝐴 ∧ ℎ̂ (𝑙 ) = ⟨𝑏, Ŝtr ( [0 ↦→ ℎ0, . . . , 𝑘 ↦→ ℎ𝑘 ] ) ⟩} ℎ = B(𝔭𝐴, 𝑘 )

write[MSTORE 𝑣1 𝑣2 ] (⟨𝑛, ⟨𝑠̂, ℎ̂⟩⟩) =

⟨𝑛 ⊓ {𝑣2 ↦→ ⟨⊤, {LenOf(𝑣1 ) }⟩}, ⟨𝑠̂, ℎ̂⟩⟩ 𝑠̂ (𝑣1 ) = 𝐴𝑟𝑟 (𝜄 (ℓ ),⊤) ∧ 𝑠̂ (𝑣2 ) = INT (1)

⟨𝑛, ⟨𝑠̂, ℎ̂[𝜄 (ℓ ) ←↪ Ŝtr (𝑚[𝑘 ←↪ ℎ] ) ] ⟩⟩ 𝑠̂ (𝑣1 ) = 𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 ) ∧ 𝑠̂ (𝑣2 ) = ℎ ∧ ℎ̂ (𝜄 (ℓ ) ) = Ŝtr (𝑚) ∧𝑚 (𝑘 ) = ⊥ (2)

⟨𝑛, ⟨𝑠̂, ℎ̂′ ⟩⟩ 𝑠̂ (𝑣2 ) = ℎ ∧
(
(𝑠̂ (𝑣1 ) = B(𝔭𝐴, 𝑛) ∧ 𝑘 = 0) ∨ 𝑠̂ (𝑣1 ) = F(𝔭𝐴, 𝑘, 𝑛)

)
∧ℓ ∈𝔭𝐴

(
ℎ̂ (ℓ ) = ⟨𝑏, Ŝtr (𝑚) ⟩ ∧ T̂

ℎ
(𝑚 (𝑘 ) ) ⊔ T̂

ℎ
(ℎ) ≠ ⊤

)
∧

strong ⇔ (𝔭𝐴 = {ℓ } ∧ ℎ̂ (ℓ ) = ⟨⊥,𝑚⟩)∧

ℎ̂′ = ℎ̂

[
ℓ ←↪

〈
𝑏,𝑚

[
𝑘 ←↪

{
ℎ strong
ℎ ⊔𝑚[𝑘 ] o.w.

]〉����ℓ ∈ 𝔭𝐴 ∧ ℎ̂ (ℓ ) = ⟨𝑏,𝑚⟩]
(3)

... ...

 o.w.

Fig. 14. Selected set of memory semantics. Recall from Section 5.3.1 that ⟨̂𝑠, ℎ̂⟩ is the pointer state, 𝑝 .

the mapping 𝑥 , and 𝑥 [𝑦 ←↪ 𝑧 |𝜙 (𝑦)] means replacing all such 𝑦 selected by the predicate 𝜙 . For
convenience, we will use this notation on the abstract heap which is actually a product of maps,
context will make clear which of the underlying maps is to be updated.

The first case (Equation 1) handles writes to an array initialization pointer. This specific case is
for when the array initialization pointer 𝑣1 points to the beginning of the array block (as indicated
by the ⊤ in the second field of the 𝐴𝑟𝑟 () constructor). According to Solidity’s memory layout, 𝑣1
points to the length field of the array, and thus the value being written 𝑣2 must be an integer. The
abstract heap ℎ̂ is not updated, but the numeric state 𝑛 is refined to record that 𝑣2 is now known to
be the length of the array 𝑣1.9 The next case Equation 2 shows the case for a struct initialization
pointer. If the value for field 𝑘 (as indicated by 𝑘 field of 𝑆) has not yet been written (𝑚(𝑘) = ⊥),
then the field 𝑘 in the initializing struct is strongly updated to be ℎ.
Equation 3 handles struct field updates. The type of field 𝑘 for each abstract struct associated

with all abstract locations in𝔭𝐴 is checked for type compatibility with the value to be written. Struct
writes support strong updates: if the set of abstract locations is singleton and its associated abstract
struct object is not a summary object (the summary flag is ⊥), then the write can be modeled with
a strong update as indicated by the strong variable. Regardless of update type, the 𝑘 field of the
abstract struct objects for each location in 𝔭𝐴 are updated within the abstract heap to be either
the least upper bound of the current field value and the new value (𝑚[𝑘] ⊔ ℎ) or the new value ℎ
depending on strong. The remaining cases for safe writes into the heap are elided with "...", the full
semantics can be found in Appendix B.
 covers any other attempted write: it indicates that the analysis immediately and conservatively

fails, as it detected a potentially unsafe write or a violation of the strongly typed heap. The semantics
of MLOAD commands, given by the read function can also be found in Appendix B.

Address Management. Finally, we sketch the process by which new abstract locations are added
into the heap, and initializing objects are folded into the main heap at the close of their initialization
window. Reads of the free pointer into a variable 𝑣 update the pointer state according to the
information computed by the allocation analysis. As all reads of the free pointer necessarily yield

9As written, the semantics technically allow multiple writes to an array pointer’s length field, however the initialization
analysis forbids such writes.
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N̂ ::= 𝑉 ↦→ 𝑣𝑛 𝑣𝑛 ::= PTR | ( [lb, ub] × 𝔓(Q) ) ⟨𝑖, 𝑞⟩ ⊔ ⟨𝑖′, 𝑞′ ⟩ = ⟨𝑖 ⊔ 𝑖′, 𝑞 ∩ 𝑞′ ⟩ ⟨𝑖, 𝑞⟩ ⊔ PTR = PTR ⊔ ⟨𝑖, 𝑞⟩ = ⟨⊤, ∅⟩
Q ::= LenOf(𝑉 ) | SafeIndOf(𝑉 ) | SafeDataOffset(𝑉 ) | SafeElemOf(𝑉 ) | . . .

plus[𝑣𝑟 := 𝑣1 + 𝑣2 ] (⟨𝑝,𝑛⟩) = ⟨𝑝 [𝑣𝑟 ↦→ 𝑣𝑝 ], 𝑛[𝑣𝑟 ↦→ 𝑣𝑛 ] ⟩
where⟨𝑣𝑝 , 𝑣𝑛 ⟩ =

⟨E (𝔭𝐴,⊤, 𝑣1 ), PTR⟩ 𝑝 (𝑣1 ) = ArrPtr (𝔭𝐴 ) ∧ 𝑛 (𝑣2 ) = ⟨32, 𝑞⟩ (4)
⟨F(𝔭𝐴, 𝑘,𝑚), PTR⟩ 𝑝 (𝑣1 ) = B(𝔭𝐴,𝑚) ∧ 𝑛 (𝑠2 ) = ⟨𝑘,𝑞⟩ ∧ 𝑘 = 0 mod 32 ∧ 𝑘 <𝑚 (5)
⟨F(𝔭𝐴, 𝑘 + 𝑘 ′,𝑚), PTR⟩ 𝑝 (𝑣1 ) = F(𝔭𝐴, 𝑘,𝑚) ∧ 𝑛 (𝑣2 ) = ⟨𝑘 ′, 𝑞⟩ ∧𝑚 > 𝑘 + 𝑘 ′ = 0 (mod 32) (6)
⟨E (𝔭𝐴,⊥, 𝑣1 ), PTR⟩ 𝑙 (𝑣1 ) = ArrPtr (𝔭𝐴 ) ∧ 𝑛 (𝑣2 ) = ⟨𝑖, 𝑞⟩ ∧ SafeDataOffset(𝑣1 ) ∈ 𝑞 (7)
⟨INT, ⟨𝑖1 + 32, {SafeDataOffset(𝑎𝑝 ) }⟩⟩ 𝑛 (𝑣1 ) = ⟨𝑖1, 𝑞⟩ ∧ 𝑛 (𝑣2 ) = ⟨32, 𝑞′ ⟩ ∧ SafeElemOf(𝑎𝑝 ) ∈ 𝑞 (8)
⟨E (𝔭𝐴,⊥, 𝑎1 ), 𝑃𝑇𝑅⟩ 𝑝 (𝑣1 ) = E(𝔭𝐴,⊤, 𝑎1 ) ∧ 𝑛 (𝑣2 ) = ⟨𝑖, 𝑞⟩ ∧ SafeElemOf(𝑎1 ) ∈ 𝑞 (9)

Fig. 15. Numeric abstract domain, and selected arithmetic abstract semantics for plus. Singleton intervals
([𝑘, 𝑘]) are written simply as 𝑘 .

pointers to an as yet uninitialized object, the abstract store 𝑠̂ is updated to bind 𝑣 to an initialization
pointer of the appropriate sort for the abstract location inferred for the read. In addition, if no
binding for the initializing address is in the heap, it is added to the initialization component of the
heap, setting all fields to ⊥. At an initialization completion point for an abstract location ℓ , the
analysis "folds" the (now fully initialized) object into the main heap. All initialization pointers that
are known to point to the beginning of the (freshly initialized) block are promoted to array or struct
pointers, and all other pointers for the initialized address as “junked” to become integers. The object
associated with 𝜄 (ℓ) is joined with the existing binding for ℓ (if it exists), and the binding for 𝜄 (ℓ)
is removed from the initialization space. Finally, if a binding existed for ℓ before the initialization
was completed, the summary flag for the abstract object is set to ⊤, we must now have at least two
concrete objects represented by the abstract object. The rest of the semantics are in Appendix B.

5.3.2 Numeric State, N̂ . The numeric domain (shown in Figure 15) only tracks store values, and is
thus a (partial) map from variables𝑉 to numeric abstractions 𝑣𝑛 . Each numeric abstraction is either
an opaque (to the numeric analysis) pointer PTR, or composed of two pieces: an interval [lb, ub]
and a set of qualifiers Q. A numeric abstraction is represented as ⟨𝑖, 𝑞⟩ in the formalism.
Qualifiers, Q. Our analysis uses an unsigned 256-bit integer representation for numbers, thus

the largest element in our interval representation is [0, 2256 − 1]. Each qualifier is an atomic “fact”
about the value to which it is attached. For example MultipleOf(𝑘) represents that the value is not
only within the bounds given by the interval, but that the value must be a multiple of 𝑘 . Similarly,
LenOf(𝑣) indicates that the value represents the length of the array variable 𝑣 . These qualifiers are
a lightweight and efficient way to elaborate a simple interval domain with enough information to
express the linear relationships and inequalities necessary to prove pointer safety without resorting
heavyweight, fully relational domains like (sub)polyhedra. The join operation on the numeric
domain can be performed pointwise, and the join of qualifiers is simply set intersection.

Arithmetic Semantics. Figure 15 displays a small selection of the plus semantics. For simplicity,
the formalism is intentionally not commutative, however our actual implementation handles any
order of arguments. The plus semantics are parameterized over the actual variable arguments 𝑣1
and 𝑣2 and takes the combined abstract analysis state as input. The output is the abstract state
extended with a binding for the result of the addition 𝑣𝑟 to the abstract pointer (𝑣𝑝 ) and numeric
(𝑣𝑝 ) values. Equation 4 handles a case where exactly one word (32 bytes) is added to the start of the
array pointer argument 𝑣1. According to the data layout of the Solidity compiler, the result must
point to the beginning of the data segment, as represented by E(𝔭𝐴,⊤, 𝑣1); note that 𝑣1 is recorded
as the “source” array in the result.
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The next two cases concern the pointer arithmetic for struct pointers; Equation 5 establishes
that the non-pointer operand is a word-aligned constant 𝑘 that is smaller than the static size of
the struct block𝑚, and produces a field pointer to that field. The second case Equation 6 handles
addition to an extant field pointer.
The final three cases cover array element safety, and illustrate the cooperation between the

analyses. Equation 7 covers the case where a variable 𝑣2 qualified with SafeDataOffset(𝑣1) is
added to the array pointer 𝑣1. The qualifier, SafeDataOffset, indicates that the 𝑣2 is a safe data
offset, that is, when it is added to the start of the array object in 𝑣1 the result is a safe, in bounds
element pointer to 𝑣1. The pointer result of this addition operation (an in bounds element pointer)
reflects this. The following case, Equation 8 demonstrates how the SafeDataOffset qualifier is
generated; when the constant 32 (the size of an EVM word in bytes) is added to a variable qualified
with SafeElemOf(𝑎1). The SafeElemOf qualifier itself indicates that the addition of the qualified
variable to the beginning of the elements of the array 𝑎1 yields a valid, in bounds element pointer
to 𝑎1. Recall from Figure 1b that the elements of an array are stored offset by a word from the
beginning an array to account for the length of the array. Thus, adding 32 to a variable qualified
with SafeElemOf yields a value that can be added to the beginning of the entire array, as the bump
by 32 will now skip the length of the array. Finally, Equation 9 shows an alternative to the previous
scenario. If a variable 𝑣2 qualified with SafeElemOf(𝑎1) is added to the start location of the elements
of 𝑎1 (given by the ⊤ in E(𝔭𝐴,⊤, 𝑣𝑎)) then this addition also yields an in bound element pointer.
We sketch how the remaining qualifiers are generated by the numeric semantics. LenOf(𝑣1) is

generated at a load from a pointer variable 𝑣1 which is mapped to ArrPtr (𝔭𝐴) in the pointer domain
𝑝 . Reading from the beginning of an array segment yields the length of that array, which is captured
by the LenOf qualifier. SafeIndOf(𝑎) is generated for a variable that is proven to be a safe (i.e., in
bounds) logical index for some array.
As discussed in Section 4, this fact is inferred by interpreting path conditions of the form 𝑖 < 𝑙 ,

where 𝑙 is qualified with LenOf(𝑎). If this path condition is true, then 𝑖 must be an in bounds index
for the array 𝑎, and is qualified with SafeIndOf(𝑎). SafeElemOf(𝑎1) is generated when a variable
qualified with SafeIndOf(𝑎1) is multiplied by 32. This multiplication transforms the logical index
into an element offset, that is, the offset within the element portion of the array object. The rest of
the arithmetic abstract semantics are in Appendix B.

6 Memory Splitting Transformation
If the pointer analyses complete successfully, then we can soundly apply our memory splitting
transformation. Recall, our goal is to replace the naive memory model (a single monolithic array)
by several disjoint arrays (a “partitioned memory-model” in the language of Wang et al. [98]).

For this, we use the abstract state computed by the pointer analysis to determine disjoint regions
of memory. Informally, each TAC command that accesses memory is associated with a set of nodes,
each representing a range of memory addresses. We build an equivalence relation on the set of
nodes accessed by a program: if a command accesses two nodes 𝑛1 and 𝑛2, then we say that 𝑛1 and
𝑛2 belong to the same equivalence class. Each equivalence class represents a region of memory
disjoint from any other equivalence class, and we partition memory into an array per class. To
denote regions of memory, we introduce the concept of a field node:

Node ::= LengthNode(𝐴) | ElementNode(𝐴) | StructNode(𝐴, 𝑁 )
A LengthNode(ℓ) denotes the addresses corresponding to the length field of the arrays allocated

at the addresses summarized by the abstract location ℓ . Likewise ElementNode(ℓ) denotes the
addresses of the elements of the arrays at locations ℓ . Finally, StructNode(ℓ, 𝑘) denotes the addresses
of field 𝑘 of the structs stored at the locations in ℓ .
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Let pointerVal(𝑙, 𝑝) return the pointer abstraction for 𝑝 (i.e., , the value of 𝑝 in the P̂ component as
shown in Figure 13) at program point 𝑙 . The function nodes(𝑝) shows how to extract the field nodes
from an abstract pointer value. We lift this to a function on labeled program points: nodes(𝑙 : 𝑖).

nodes(𝑝 ) =


{LengthNode(ℓ ) | ℓ ∈ 𝔭𝐴 } 𝑝 ≡ ArrPtr (𝔭𝐴 ) ∨ (𝑝 ≡ 𝐴𝑟𝑟 (𝜄 (ℓ ),⊥) ∧ 𝔭𝐴 ≡ {ℓ })
{ElementNode(ℓ ) | ℓ ∈ 𝔭𝐴 } 𝑝 ≡ E(𝔭𝐴, 𝑏, 𝑣) ∨ (𝑝 ≡ 𝐴𝑟𝑟 (𝜄 (ℓ ),⊤) ∧ 𝔭𝐴 ≡ {ℓ })
{StructNode(ℓ, 0) | ℓ ∈ 𝔭𝐴 } 𝑝 ≡ B(𝔭𝐴, _)
{StructNode(ℓ, 𝑘 ) | ℓ ∈ 𝔭𝐴 } 𝑝 ≡ F(𝔭𝐴, 𝑘, _) ∨ (𝑝 ≡ 𝑆𝑡𝑟 (𝜄 (ℓ ), 𝑘 ) ∧ 𝔭𝐴 ≡ {ℓ })

nodes(𝑙 : 𝑖 ) =


nodes(pointerVal(𝑙, 𝑝 ) ) 𝑖 ≡ 𝑀 [𝑝 ]
nodes(pointerVal(𝑙, 𝑝 ) ) 𝑖 ≡ 𝑀 ← 𝑀 [𝑝 := 𝑣 ]
∅ otherwise

Next, we define mergealias :

(𝑛1, 𝑛2) ∈ mergealias ↔ ∃𝑙 : 𝑖 ∈ 𝑃 . {𝑛1, 𝑛2} ⊆ nodes(𝑙 : 𝑖)

and let merge∗alias be its (reflexive, symmetric) transitive closure.
Finally, we let 𝑅alias be a function that assigns each labeled command 𝑙 : 𝑖 to 𝑀𝔢, where 𝔢

identifies the (single) equivalence class of merge∗alias containing nodes(𝑙 : 𝑖) (there is a single
class by construction since all pairs of nodes in nodes(𝑙 : 𝑖) are equated). 𝑅alias is then used as
follows to uniquely name each memory partition; in the following 𝑅𝑙 abbreviates 𝑅alias (𝑙 : 𝑖):

SplitMemory(𝑅alias, 𝑙 : 𝑖 ) =


𝑙 : 𝑅𝑙 [𝑝 ] 𝑖 ≡ 𝑀 [𝑝 ]
𝑙 : 𝑅𝑙 ← 𝑅𝑙 [𝑝 := 𝑣 ] 𝑖 ≡ 𝑀 ← 𝑀 [𝑝 := 𝑣 ]
𝑙 : 𝑖 otherwise

7 Evaluation
We implemented our analysis and transformation as part of CertoraProver in approximately
20K lines of Kotlin. CertoraProver (and our additions to it) works on EVM bytecode generated
by all versions of the Solidity compiler starting from 0.4.24 and above.10 Documentation about
CertoraProver can be found here: https://docs.certora.com/en/latest/index.html.
The goal of this section is to provide evidence E1 and E2 that support the claims C1 and C2

presented in Section 1. To that end, we are interested in answering the following research questions.
E1 How does memory splitting affect the performance of SMT-based functional correctness

verification of Solidity smart contracts (Section 7.1)?
E2 Can CertoraProver help uncover compiler bugs (Section 7.2)?

7.1 Effect of Memory Splitting on the Performance of SMT-Based Verification
We are interested in validating the claim that the memory splitting rewrite we introduced in
Section 6 that is guided by the novel memory analysis in Section 5 helps in speeding up formal
verification of real-world smart contracts. Below we first describe the experiment, then we discuss
how we selected the benchmarks to evaluate on, and finally report the results. We ran these
experiments on an EC2 server running 64-bit Ubuntu, with 72 GB memory running two containers
each with 35 GB memory. Each container ran a single verification task at a time. CertoraProver uses
the portfolio method [102] with a variety of SMT solvers including Z3 [44], CVC4 [30], CVC5 [28],
and Yices [46]. A timeout means that none of the solvers generated a result in the given time.
Experimental setup. To evaluate the effectiveness of the memory splitting transformation, we

ran CertoraProver in two modes. First, we disabled the memory splitting transformation altogether
and ran verification. Then we turned on the memory splitting transformation and reran the same

10The most recently released version of Solidity is 0.8.25.
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Fig. 16. (Left) Comparing the verification (SMT solving) time with and without the memory splitting rewrite
enabled. (Right) End-to-end running time of CertoraProver with and without the memory splitting trans-
formation sped up verification in many cases and in most cases had negligible effect on the overall running
time of CertoraProver. For both figures, points above the 𝑥 = 𝑦 line represent benchmarks for which memory
splitting sped up SMT solving and end-to-end running time of CertoraProver. All times are in seconds and
shown in log scale to better capture the wide range of running times across the verification tasks.

verification tasks. We then compared the running times of the SMT solvers and also the end-to-end
running time of CertoraProver in both modes. To mitigate variance in the results, we made sure
that the SMT solvers were run with a fixed seed. We additionally ran the entire experiment 3 times
to make sure that the results were similar each time.
Benchmark selection. CertoraProver is an industrial formal verification tool with many users

who are primarily developers of smart contract protocols. Users of CertoraProver include top “DeFi”
(decentralized finance) protocols11 like Aave (V2, V3, Gho) [6], Lido [13], Morpho [12], GMX [11],
Euler [14], Maker [8], Silo [15], Uniswap V4 [17], Safe [16], Balancer [7], Curve [10], etc. many of
which are open-source. The results of CertoraProver are only meaningful if there are high-level
specifications (recall from Section 2 that we call them “rules”) for the program, otherwise there is
no property for CertoraProver to verify. Therefore, we evaluate our claim C1 on real-world smart
contracts that have specifications. Table 1 shows the specific list of smart contracts for which we ran
the evaluation. Users run CertoraProver as a cloud service allowing us to analyze the performance
of the tool on new specifications. To evaluate the effect of memory splitting on the SMT solving
time, we looked at verification tasks run by customers starting at the beginning of 2024.

To ensure that we selected non-trivial verification tasks, we filtered out rules that had an end-to-
end CertoraProver running time of less than 15 seconds at the time of sampling (this is the time to
run the entire pipeline shown in Figure 2 and includes the SMT solving time). Users of CertoraProver
run the same rule many times on the cloud (often as part of some continuous integration), so we
made sure not to select the same rule more than once. We ended up with 229 unique verification
tasks, where a verification task corresponds to checking a single rule for a single Solidity method.
The dataset does contain multiple unique “rules” for some contracts.

Results. Figure 16 and Table 2 show the results of our evaluation. In Table 2 we show that
memory splitting speeds up SMT-solving time by 2.03× on average. Figure 16 (Left) shows the SMT
solving time in both modes: with and without memory splitting. Red circles show benchmarks
for which both modes found a violation of the specification (or rule). Green circles show those
which were verified by both. For both these cases, we see that most of the dots are above the 𝑥 = 𝑦

11https://dappradar.com/rankings/defi
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Table 1. A summary of real-world smart contracts for which we evaluated the effect of memory splitting on
verification. We selected these by filtering CertoraProver runs on the cloud by external users of CertoraProver.
Crucially each of these contracts have multiple associated specifications (rules) that the contract developers
are interested to verify. Here we also report on the number of memory partitions CertoraProver generated for
each of these contracts.

Contracts # Partitions Contracts # Partitions
AccessManager 220 MultichainGovernor 712
ActivePool 294 Obelisk 425
ATokenWithDelegation 439 OperatorsRegistryV1 494
MintOperationFixture 18 OrderBookHandle 430
MintPoolArrayFixture 22 PayloadsController 431
CoinFlip 344 PirexEth 737
CreateRental 432 Pools 977
CreateRental 564 RedemptionNFT 1119
CrossChainControllerWithEmergencyMode 689 RegistryCoordinator 996
CrossChainForwarder 371 RNGSender 205
CrossChainReceiver 330 RNGSender 207
Curves 273 Safe 121
CurvesERC20 267 SafeTokenLock 135
Custodian 889 ShareCollateralToken 2491
EigenPod 1007 ShareDebtToken 2483
ERC20ClubFactoryEth 246 Silo 2789
ERC721 155 Silo0 2873
ERC721M 316 Silo 2798
EulerSwap 230 SmartVaultV3 837
EzEthToken 430 SolverVaultToken 258
FeeFlowController 359 StakedAaveV3 917
GhoFlashMinter 320 StakeManager 146
GhoToken 202 StakeToken 338
Governance 926 StakeupToken 1129
GovernancePowerStrategy 1082 StakeVault 183
Gsm 342 Starport 298
InterestRate 128 Starport_19_20 569
IonPool 552 Stop 245
IonPool 558 Storage 540
IonPoolStorage 899 StrategyManager 1091
JUSD 586 StTBY 1134
LendingPool 492 TermAuction 349
LeverageModule 1104 TermRepoServicer 1227
Liquidation 548 Tranche 437
LMPStrategy 1822 TruflationToken 528
MerkleDistributorModuleERC20 311 USDS 520
MerkleDistributorModuleERC721 362 VotingEscrowTruf 528
MetaMorpho 553 VotingMachine 801
MiniMeToken 171 VotingMachineTriple 812
Morpho 157 WETHRebasing 232
MorphoInternalAccess 358

line, which indicates that memory splitting was able to speed up SMT solving time. We also show
verified-timeout and violated-timeout, which represent benchmarks for which SMT solvers
timed out without memory splitting but were successful at verifying (or finding counterexamples)
with splitting enabled. In total, there were 16 such cases. In addition to the 16 timeouts that memory
splitting mitigated, the largest speed up in SMT solving we observed was 120× where without
memory splitting it took 12s but with memory splitting it only took 0.1s. The largest slow down in
SMT solving with memory splitting that we witnessed is 4.65× where without memory splitting it
took 79s but with memory splitting it took 368s.

The right half of Figure 16 shows the end-to-end running time of CertoraProver in both modes.
Each green dot corresponds to a successful end-to-end run of CertoraProver. Points above the
𝑥 = 𝑦 line represent examples where memory splitting sped up end-to-end runs of CertoraProver.
Table 2 summarizes this data: memory splitting sped up CertoraProver by 1.19× on average. While
the end-to-end running time improvements may not seem significant at first, the cumulative effect
is large in the context of a tool like CertoraProver where users run verification repeatedly on the
cloud as continuous integration. Most of the rules are often run on many methods and checked
every time there is a change in the contract code.
Number of partitions and failures. Table 1 shows the number of memory partitions that were

generated for each smart contract. We also measured the total number of functions for which
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Table 2. Mean end-to-end running time and SMT solving time (in seconds) of CertoraProver with and without
the memory splitting rewrite over all the tasks.

Mode Mean end-to-end time Mean SMT time
w/o Rewrite 205.56s 111.47s
w Rewrite 172.25s 54.93s

Table 3. A summary of 5 compiler bugs found as a result of CertoraProver’s pointer analysis. “Version” refers
to the Solidity compiler version. We discuss one of the bugs in this section and the rest can be found in
Appendix C.

Bug description Version Ack Fixed
Storage Corruption 0.7.3 Yes Yes [3]

Memory Isolation Violation <= 0.8.3 Yes Yes [4]
Non-deterministic Transaction < 0.8.0 Yes Yes [1]
Incorrect Calldata Validation < 0.8.13 Yes Yes [5]

Memory Corruption < 0.6.5 Yes Yes [2]

memory splitting failed. Over the 229 benchmarks, we had a total of 17844 functions (across all the
smart contracts in Table 1). Out of these, CertoraProver was unable to split memory for 2.7% (488)
of the functions. Note that even if splitting fails for some functions but succeeds for others, that
may still be useful. There were no benchmarks for which splitting failed entirely for all functions.
The maximum failure rate we observed in any given benchmark is 2.4%.

// ghost variable whose update is not specified in this snippet

ghost bool settleLoan_hasBeenCalled;

rule onlyBorrowerCanRepayALoan() {

Custodian.Command cmd;

require(!settleLoan_hasBeenCalled);

require(cmd.action == Custodian.Actions.Repayment);

address fulfiller;

// generateOrder invokes settleLoan under some conditions.

generateOrder(fulfiller, cmd);

assert settleLoan_hasBeenCalled =>

(fulfiller == getBorrower(cmd.loan) OR

fulfiller == getApproved(getLoanId(cmd.loan)));

}

Fig. 17. Simplified example of a rule written in CertoraProver’s
specification language for which SMT solving timed out without
memory splitting but succeeded to find a counterexample in less
than a minute when enabled.

The practical implication of these
failures for CertoraProver is how they
affect the downstream memory split-
ting transformation which consumes
the results: false positives means that
the memory splitter will not be as
effective since it will not be able to
treat various memory regions as dis-
joint. If no memory splits succeed,
then the effect on the SMT solvers
will be as if we ran without this fea-
ture. For complex programs where
memory splitting would otherwise
benefit, this could cause slower ver-
ification times.

Representative Example. To give readers a sense of the kinds of properties CertoraProver is
used for verifying, we highlight one example in Figure 17 from the above 229 tasks for which
the SMT solver timed out without memory splitting but found a counterexample in 47s when the
transformation was enabled. While the details of the smart contract’s code and the specification
language are beyond the scope of this paper, at a high-level the property states that only a borrower
(fulfiller) of a loan or one approved for a loan should be able to repay it.

In summary, we conclude that memory splitting is effective for resolving timeouts in real-world
verification tasks and significantly reduces SMT solving time without adding significant overhead.

7.2 Bugs Found in Solidity Compilers
CertoraProver has led us to detect 5 bugs in various versions of the Solidity compiler. We describe
one of the compiler bugs here. The remaining four bugs are described in Appendix C. Table 3
summarizes the bugs. All bugs have been acknowledged by the Solidity team and fixed.
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Table 4. Comparing CertoraProver to Halmos. Halmos offers limited expressivity in the specifications shown
by ✗𝑛𝑜𝑆𝑝𝑒𝑐 but in the case where it does support expressing the property, Halmos is still not able to verify it
because they do not have a way to reason about memory accesses.

Contract (Spec) CertoraProver Succeeded Halmos Succeeded CertoraProver Time Halmos Time
ERC20 (check_transfer) ✓ ✓ 22.3s 29.37s
ERC20 (check_transferFrom) ✓ ✓ 22.2s 25.86s
ERC20 (check_NoBackDoor) ✓ ✓ 32.9s 18.81s
ERC20 (check_transferReverts) ✓ ✗𝑛𝑜𝑆𝑝𝑒𝑐 24.1s N/A
ERC20 (check_checkTransferDoesntRevert) ✓ ✗𝑛𝑜𝑆𝑝𝑒𝑐 18.28s N/A
ERC20 (check_sumOfBalancesEqTotalSupply) ✓ ✗𝑛𝑜𝑆𝑝𝑒𝑐 23.5s N/A
ERC20 (check_sumOfBalancesGeqAnyBalance) ✓ ✗𝑛𝑜𝑆𝑝𝑒𝑐 24.43s N/A
MakerDAO (chedk_FundamentalEquationOfDai) ✓ ✗𝑛𝑜𝑆𝑝𝑒𝑐 9.3s N/A
Array (check_allSame) ✓ ✗ 13.68s N/A

Bug discovery process. As mentioned in previous sections, CertoraProver’s points-to analysis
either return a sounds points-to set, or fails. We uncovered each bug by identifying the location
that the points-to analysis failed, and examining the abstract state at that point to discern why the
code was not in fact memory safe.

Storage Corruption. Similar to memory, array elements in storage are laid out in contiguous
slots, with the length stored in a separate slot. However, there is a special case for bytes or string of
length 31 or lower: in this case the Solidity compiler packs the element data of the array in the
upper (i.e., most-significant) bytes of the length storage slot, leaving the least-significant byte to
hold the length of the array. Effectively, the Solidity compiler attempts to save space by using only
a single storage slot for short byte arrays. For longer arrays (length 32 or greater), the length and
the data are stored separately.

The Bug. The Solidity compiler generates multiple conditionals over the length of the array to
select the correct algorithm for copying from memory to storage. One check is whether the length
of the array is less than 32. If not, the generated code falls back on an “unpacked representation”.
It is only after the Solidity compiler checks if the length is greater than 32 does it check if the
length is zero, which at that point is impossible. If, however, the length is 31 or less, the generated
code enters a branch that uses the packed representation. Since memory on the EVM is read in
32-byte chunks, a single read at the beginning of the array element segment is sufficient to read the
entirety of the array contents. Accordingly, the Solidity compiler generates code that increments
the array pointer by 32-bytes (skipping the length field), and then generates an unconditional read
from that position. The data read from this read is then packed together with the length and stored
into memory. The bug occurs in the case where the array being copied is of length 0. The Solidity
compiler never checks whether there is data for it to read after the length field. In other words,
the Solidity compiler (mistakenly) assumes there must be at least one byte of data. However, if the
array length is zero, the bytes immediately following the length field are totally arbitrary. Thus, the
read and subsequent store of the “array data” in fact stores meaningless 31-bytes followed by the
length in the least significant byte (i.e., 0). This particular bug was caught by the logic in Equation
25 in Appendix B: the element pointer E had ⊤ as its second field (indicating it was not necessarily
safe for reading) and there was no proof that the array was non-empty in the numeric state.

7.3 Comparison to Other Tools
In addition to evaluating the main two claims of this paper in the above two sections, we also
compared CertoraProver with Halmos [60], a tool that symbolically evaluates EVM bytecode to
detect vulnerabilities.
Halmos is similar to CertoraProver for two reasons: first, it verifies EVM bytecode like Cer-

toraProver, and second, it allows users to write high-level functional correctness properties. Halmos
allows users to write tests in Solidity which it then interprets as specifications by replacing concrete
inputs by symbolic ones.
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For this experiment, we focused on ERC20 tokens and the famousMakerDAO bug.12 First, we took
all 3 tests Halmos had for ERC20 tokens13 and translated them to specifications for CertoraProver.
CertoraProver was able to successfully verify them all. Then, we attempted to convert additional
specifications for ERC20 tokens14 to specifications for Halmos but this was not possible due to
limitations in the expressivity of Halmos’s specifications. For example, CertoraProver allows ghost
variables (similar to Dafny [69]) which are essential for expressing token invariants like “sum of
balances = total supply” or properties like “sum of balances >= balance of any address” but these
cannot be expressed in Halmos.
We therefore tried a simpler experiment—we converted the specification in Figure 1a to a

specification for Halmos and ran their tool which was successful. However, Halmos was not able to
verify this property; we reached out to the developers of Halmos who confirmed that Halmos does
not support indexing into memory with symbolic offsets because it does not have any memory
analysis that can help resolve the offsets. Table 4 summarizes our results. We see that for the
properties that we got from Halmos, CertoraProver actually took longer in some cases. This is not
surprising because the properties that Halmos can verify are simple and therefore do not require
any of the additional optimizations and analyses CertoraProver has. These analyses add to the
additional running time of CertoraProver.

8 Related Work
Many tools have been proposed for verifying and fuzzing smart contracts [19, 20, 22–24, 27, 31,
32, 36, 37, 40, 41, 49, 50, 53, 55–57, 65, 66, 68, 70–73, 76–78, 81, 84–87, 89, 92–94, 101]. For readers
curious to learn more, we recommend recent surveys [45, 64] that provide comprehensive analyses
of various tools and cover a wide spectrum of techniques from fuzzing to theorem proving.
Several symbolic execution tools [38, 40, 50, 61, 70, 94] analyze EVM bytecode looking for

specific classes of vulnerabilities like arithmetic overflow, reentrancy, etc. Securify has a DSL
that allows users to express security patterns that the code must satisfy. Unlike CertoraProver,
these are low-level properties about load and store operations at the bytecode level. Zeus [66]
has a DSL for specifying properties. Unlike CertoraProver, Zeus however verifies LLVM bitcode.
Other tools [26, 59, 99] perform bounded verification of Solidity smart contracts at the source
level by translating to the Boogie verification language. We conducted an experiment comparing
CertoraProver with a recent symbolic execution tool, Halmos [60] in Section 7.3. We found that it
is limited in its ability to support properties that involve indexing into memory.

Recent work [34, 35] uses Dafny [69] for formalizing EVM semantics and shows early results of
using Dafny for verifying smart contracts that involve external calls and failures. CertoraProver
too can reason about programs with these features and as our evaluation shows, runs on real-world
protocols. [67] is another effort that formalizes the semantics of the EVMusing the K-framework [96].
Other researchers have modeled EVM’s memory [19, 86]—Smaragdakis et al. [86] use a concolic
execution based idea for scaling a fully inter-procedural and strongly context-sensitive static
analysis by balancing precision and performance. Grech et al. [53] and Brent et al. [32] propose
static analyses that rely on specific program patterns, but tend to generate false positives for
programs that do not fit in those patterns. Both however, avoid path explosion, which is a common
challenge in static analysis. Lagouvardos et al. [68] presented a model of EVM’s memory based on
syntactic patterns that infer high-level information from low-level memory operations. They use
an entirely different toolchain [52, 90]. Using their model for memory splitting is likely possible in

12https://hackmd.io/@SaferMaker/DAICertoraSurprise
13https://github.com/a16z/halmos/tree/main/examples/tokens/ERC20
14https://github.com/Certora/tutorials-code/tree/master/lesson4_invariants/erc20
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theory but the benefit in speeding up SMT solving would be hard to measure—to the best of our
knowledge, there is no support for writing and verifying diverse range of high-level specifications
in their tool, unlike CertoraProver. We are eager to explore our key ideas in other domains.
There are many foundational algorithms for pointer analysis [25, 33, 39, 82, 83, 91] and several

detailed literature surveys [62, 63]. Tools like Ghidra [51] and IDA Pro [79] that disassemble x86
must recover stack allocations, which is similar in essence to our allocation analysis. The idea of
using memory analysis as a preprocessing step for scaling verification has been demonstrated in
prior work for C programs [18, 42, 58] and directly for SMT-LIB formulae [48]. As explained in
Section 1, prior approaches are not applicable for EVM due to the absence of explicit allocations.

9 Future Work and Limitations
We have encountered many real-world examples where the memory analysis improves the precision
of formal verification in addition to providing speedups. For example, the analysis is helpful in
resolving external calls that would otherwise have to be “havoced”. We leave a thorough analysis
of this for future work. In addition to analyzing memory, CertoraProver also analyzes EVM storage.
We look forward to presenting and evaluating that in future work.

Even though this paper focused primarily on EVM bytecode generated by Solidity compiler
(versions 0.4.25 and above), CertoraProver also works on bytecode generated from Vyper programs.
An evaluation of the effectiveness of the analyses for Vyper is left for future work.
Limitations CertoraProver relies on known, existing allocation strategies used by various versions
of the Solidity compiler. Although the pattern recognition mechanism of the allocation analysis is
resilient to slight changes in the EVMbytecode formats, significant changes will cause CertoraProver
to fail. However, in our experience using CertoraProver on a wide range of versions, such changes
only occur at major releases of the Solidity compiler, which happen relatively infrequently, and
generally offer enough warnings that CertoraProver can be adapted as appropriate. CertoraProver
supports all Solidity compilers starting from 4.24 to the latest 8.26.

Since CertoraProver operates on EVM bytecode, it can support programs with "inline assembly"
(i.e., handwritten EVM bytecode). However, our analysis is ultimately trying to infer shape and
typing invariants for the low-level bytecode of the source solidity program. To a certain extent,
the analysis depends on the bytecode generated by the Solidity compiler accessing memory in
predictable ways. For example, if the compiler could prove that two structs s1 and s2were definitely
allocated sequentially, then it could (safely) compute a pointer to the last field of s1 by subtracting
32 from s2. However, this does not conform to how CertoraProver’s abstract domain expects
memory to be accessed and the analysis would fail. Similarly, memory accesses via inline assembly
may actually be safe, but appear to break typing/separation invariants from the point of view of
our abstract domain, which can also cause the analysis to fail.

10 Data-Availability Statement
Our artifact is available at the ACM DL [9]. CertoraProver is also available at https://www.certora.
com/ and documentation can be found at https://docs.certora.com/en/latest/index.html.
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