
Debugging Probabilistic Programs

Chandrakana Nandi
Dan Grossman

University of Washington, Seattle, USA
{cnandi, djg}@cs.washington.edu

Adrian Sampson
Cornell University, Ithaca, USA

asampson@cornell.edu

Todd Mytkowicz
Microsoft Research, Redmond, USA

toddm@microsoft.com

Kathryn S. McKinley
Google, USA

mckinley@cs.utexas.edu

Abstract
Many applications compute with estimated and uncertain data.
While advances in probabilistic programming help developers build
such applications, debugging them remains extremely challenging.
New types of errors in probabilistic programs include 1) ignoring de-
pendencies and correlation between random variables and in training
data, 2) poorly chosen inference hyper-parameters, and 3) incorrect
statistical models. A partial solution to prevent these errors in some
languages forbids developers from explicitly invoking inference.
While this prevents some dependence errors, it limits composition
and control over inference, and does not guarantee absence of other
types of errors. This paper presents the FLEXI programming model
which supports constructs for invoking inference in the language
and reusing the results in other statistical computations. We define a
novel formalism for inference with a Decorated Bayesian Network
and present a tool, DePP, that analyzes this representation to iden-
tify the above errors. We evaluate DePP on a range of prototypical
examples to show how it helps developers to detect errors.

CCS Concepts • Software and its engineering→ Syntax; Error
handling and recovery; • Mathematics of computing → Maxi-
mum likelihood estimation

Keywords Probabilistic programming, debugging, program analy-
sis, statistical inference

1. Introduction
Estimated data is consumed and produced by a wide range of ap-
plications spanning machine learning, sensors, and approximate
hardware. Insufficient programming languages, tools, and statis-
tical expertise mean that these probabilistic programs may pro-
duce unexpected results at best and incorrect results in the worst
case. In addition to the usual logic and other programming errors,
probabilistic programs add their own set of debugging challenges—
inference tasks involve approximations which propagate through
programs and lead to incorrect outputs. Recent work offers devel-
opers some help in reasoning about the correctness of probabilistic
programs [33, 34]. For example, programmers can write proba-
bilistic assertions [33], but unlike traditional assertions which must
always be true, probabilistic assertions are specified with a probabil-

ity of being true in a given execution. Even though these assertions
fail when the program’s results are unexpected, they do not give us
any information about the cause of the failure. To help determine
the cause of failure, we identify three types of common probabilistic
programming defects.

Modeling errors and insufficient evidence. Probabilistic pro-
grams may use incorrect statistical models, e.g., using Gaussian
(0.0, 1.0) instead of Gaussian (1.0, 1.0), where Gaussian (µ, σ) rep-
resents a Gaussian distribution with mean µ and standard deviation
σ. On the other hand,even if the statistical model is correct, their
input data (e.g., training data) may be erroneous, insufficient or
inappropriate for performing a given statistical task.

Ignoring dependence. A probabilistic program can have a depen-
dence bug if 1) random variables are incorrectly treated as indepen-
dent, or 2) inference tasks are composed incorrectly or performed
too early in the system.

Incorrect hyper-parameters. Incorrectly chosen hyper-parameters
in inference algorithms (e.g., sample size) can lead to approximation
bugs or, conversely, wasted effort (computation time).

Some probabilistic programming languages [5, 7, 33] prevent
some of these defects by making inference inaccessible to the
programmer. Uncertain〈T〉 [7], for example, implicitly invokes a
hypothesis test whenever the program performs a conditional on a
random variable, and the result is a “flat,” non-statistical Boolean.
This simplicity comes at a cost in expressiveness: many application
scenarios need to invoke inference at arbitrary points while giving
statistical semantics to the inference results. For example, to the
best of our knowledge, no current programming system supports
composition of inference results produced on different machines.
If worker machines in a data center application run independent
statistical computations, they need a way to send their results over
the network. In a traditional probabilistic programming language, the
workers would need to either serialize an entire Bayesian network
representation or exit the probabilistic domain and communicate
“flat” values. By instead running inference, each worker machine
could produce a compact statistical representation to send to a
combining machine.

This paper presents a programming model called FLEXI (FLEXible
Inference), in which inference is a first class citizen in the core lan-
guage, similar to WebPPL [16] and Figaro [29]. Our implementation
of inference samples from closed-form distributions (both discrete
and continuous), or from computations that produce distributions.
We give semantics to inference using the notion of a novel Decorated
Bayesian Network (DBN). To ensure that the resulting program does
not have the previously mentioned bugs, we developed a debugger,
DePP (Debugger for Probabilistic Programs) that exploits the DBN
representation. To the best of our knowledge, DePP is the first tool
of its kind. We implement some prototypical examples to evaluate
DePP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MAPL’17, June 18, 2017, Barcelona, Spain
c© 2017 ACM. 978-1-4503-5071-6/17/06...$15.00

http://dx.doi.org/10.1145/3088525.3088564

18

Uncertain <double > X = new Gaussian(0.0, 1.0);
Uncertain <double > Y = from x in X select x * 2;
Uncertain <double > Z = from y in Y

from x in X
select y + x;

if (Z < 6) {
Console.Write("2-sigma rule holds for z.");}

Figure 1: Probabilistic program written in Uncertain〈T〉.

x Gaussian(0.0,1.0)

y λ x. x * 2

z λ x y. x + y

Figure 2: Bayesian network for entire program in Figure 1.

2. Background
This section provides an overview of Uncertain〈T〉 and probabilistic
assertions on which our work is based.

2.1 Uncertain〈T〉
Uncertain〈T〉 is a probabilistic programming model built on top of
C# and LINQ. It is a generic data type that can represent proba-
bility distributions over a numeric type, T . It overloads operators
from LINQ such as Select and SelectMany for Uncertain types to
construct Bayesian networks (which are directed acyclic graphs)
where the nodes represent random variables and edges represent
dependencies. A node can have parameters such as mean, variance,
etc. that define the probability distribution being represented by the
random variable. Figure 1 shows an example of a program written
in Uncertain〈T〉. x ∼ Gaussian (0.0, 1.0), y ∼ Gaussian (0.0, 2.0)
and z ∼ Gaussian (0.0, 3.0). Figure 2 shows its Bayesian network
representations. The program creates a Gaussian distribution using a
random primitive and performs arithmetic on it. It demonstrates the
three kinds of operations allowed in Uncertain〈T〉: 1) creating a new
uncertain value using a random primitive (line 1), 2) building up
more complex uncertain values using operations on the underlying
types (line 2-5), and 3) conditionals over the uncertain types (line
6).

2.2 Probabilistic Assertions
Since probabilistic programs may or may not produce correct out-
puts in all executions, they require a statistical view of correctness.
Sampson et al. [33] introduced probabilistic assertions, or passerts,
and an analysis to check them. Unlike classic program assertions
which must be true in all program executions, passerts may only be
true in some executions. We have added passerts to Uncertain〈T〉—
we write them as passert(e, p) where e is an expression and p is
the minimum probability with which the assertion must hold at 95%
confidence level. The output of evaluating a passert in Uncertain〈T〉
is a boolean. Figure 3 presents the data obfuscation program from
the passert [33] paper written in Uncertain〈T〉. The passert checks
that the Gaussian noise added as obfuscation does not change the
actual observation too much and returns false if it does.

3. Motivating Examples
This section illustrates how the three categories of failures described
in the introduction arise in probabilistic programs.

3.1 Incorrect Models
In Figure 3, if we change the mean of the Gaussian from 0.0 to
1.0, the probability of the assertion being true reduces a lot. For a
confidence of 95% and the same number of samples, the confidence
interval for a mean of 1.0 is (0.49, 0.51) whereas the confidence
interval for a mean of 0.0 is (0.84, 0.85). This example shows that
choosing the right statistical model is crucial for ensuring that a
probabilistic assertion passes.

3.2 Incorrect Data
Correct modelling cannot compensate for bad training data. Con-
sider the temperature model in Figure 4 with a passert stating that
the predicted temperature in Seattle, Washington should be less than
110 with probability 0.9. (The record high temperature for Seattle is
102◦F set on July 29, 2009.)

double precise = 15493.5;
Uncertain <double > Noise = new Gaussian (0.0,1.0);
var Obfuscation = from n in Noise

select precise + n;
var Error = from o in Obfuscation

select o - precise;
passert((Error < 1.0), 0.9);

Figure 3: Data obfuscation code.

double[] temperatures = load(training_data);
double[] weights = LearnWeights(temperatures);
double prediction = InferModel(test , weights);
passert (prediction < 110, 0.9);

Figure 4: Temperature prediction system.

In this example, if the training data mistakenly includes readings
from Scottsdale, Arizona where high temperatures regularly reach
110◦F in the summer, then no matter how accurate the statistical
learning algorithms are, the resulting prediction will not be correct
and the assertion will fail.

3.3 Ignoring Dependence by Treating Random Variables as
Independent

Consider an implementation of a monitoring system involving a
thermometer and a hygrometer in Figure 5. The monitoring system

List <Uncertain <double >> Temperature;
List <Uncertain <double >> Humidity;
var test = from t in Temperature.ElementAt(0)

from h in Humidity.ElementAt(0)
select (h > 90 & t > 77);

passert (test , 0.9);

Figure 5: Treating dependent data as independent.

records both temperature and humidity at certain intervals and sends
them through a communication channel as (t,h) pairs. If the channel
randomly induces noise ε in some of the readings such that ε for t
and h within any given pair is equal, then the values of temperature
and humidity received at the other end of the channel will not be

19

independent. In this program however, temperature and humidity are
treated as independent random variables. Consequently, it may cause
the passert to fail because the correlation between temperature and
humidity is ignored.

3.4 Ignoring Dependence by Performing Inference Too Early
Consider the code in Figure 6 which is similar to Figure 1 but
with a passert. In this program, both y and z depend on the same
values of x. We can verify that the passert is true. Now consider

Uncertain <double > X = new Gaussian(0.0, 1.0);
Uncertain <double > Y = from x in X select x * 2;
Uncertain <double > Z = from y in Y

from x in X
select y + x;

passert(z < 6, 0.9)

Figure 6: Program from Figure 1 with a passert.

adding an explicit inference call invoking MCMC [15] sampling to
approximate the distribution of y using 1000 independent executions
as shown in Figure 7. Due to this operation, the information
regarding the dependence of z and y on the same x is lost. The
outcome of performing inference on z as mcmc_sample(z, 1000)
would thus give us 1000 samples from z computed using separate
sets of values drawn independently from y and x.

Uncertain <double > X = new Gaussian(0.0, 1.0);
Uncertain <double > Y = from x in X select x * 2;
Uncertain <double > Ys= Y.mcmc_sample (1000)
Uncertain <double > Z = from y in Ys

from x in X
select y + x;

passert(z < 6, 0.9)

Figure 7: Running inference early on an uncertain type leads to loss of
dependence information.

Because the dependence between z and y is ignored, the passert
may fail. This example shows that a call to an inference method
(mcmc_sample) too early in the Bayesian network can lead to incor-
rect program output or failure of a passert. The potential for these
types of errors is high in systems that for practical reasons, want
to compose models and communicate results between them, rather
than having one giant model. An example is a machine learning
model with a very large and diverse training dataset.

3.5 Incorrect Hyper-parameters
Inference tasks involve hyper-parameters such as sample size, top-
k etc. Their values impact the result of the inference procedure.
Further, the choice of the values depends on how the model obtained
after inference is going to be used. As an example, in a program
with multiple inference procedures, where the outcome of one
inference is used in another, insufficient samples can degrade the
final outcome of the program, but lots of samples can substantially
slow the program down with no gains in accuracy. Below are some
experimental results illustrating this.

Insufficient sampling For evaluating passerts, Sampson et al. [33]
use the Chernoff bound—an over-approximate bound which does
not consider the quality of the samples drawn so far and gives
a sample size purely based on the confidence level and accuracy.
Evaluating a passert is a form of inference similar to MCMC in
Section 3.4 but not used in any further computations. We ran their
data obfuscation code [33] using 200 samples (instead of 8321

samples as suggested by the Chernoff bound) and observed that for
the same confidence level, the interval was wider, (0.78, 0.88) and
the passert failed due to this imprecision.

Wasteful sampling On the other hand, we observed that changing
the number of samples from 8321 to 2000 has a very small effect in
the output—the confidence intervals returned were (0.83, 0.85) and
(0.83, 0.86) respectively.

4. The FLEXI Programming Model
This section formalizes the imperative FLEXI programming language
that extends Uncertain〈T〉 with inference operators and probabilistic
assertions.

4.1 Language
Figure 8 shows the core language syntax of FLEXI. FLEXI builds
on a standard imperative language with variables, assignment,
sequencing, and control flow constructs. It adds distributions d,
which programs can draw from using distribution assignments v← d.
The grammar includes a special inference expression I (v, List(e))
that takes an arbitrary Uncertain<T> value v and zero or more
hyper-parameters e and produces a new primitive Uncertain<T>
value for the same T. FLEXI provides different inference algorithms:
enumeration, mcmc_sample, maximum likelihood estimation (MLE),
maximum a aestimation (MAP), etc. The ulist expression converts
a list of uncertain values List(Uncertain(T)) to an uncertain list of
values UList(T). FLEXI programs end with a single probabilistic
assertion.

4.2 Decorated Bayesian Network
We represent probabilistic programs as Decorated Bayesian Net-
works(DBNs). Figure 9 (a) shows the network at line 3 of Figure 7,
after calling mcmc_sample. The Bayesian network has no node corre-
sponding to the variable y. Due to mcmc_sample, the sub-graph was
replaced with a single, independent node that contains the result of
the MCMC inference process.

The mcmc_call call analyzes the representation of the Bayesian
network rooted at the node where it was called (in this case, the
node y) to infer the distribution and draws samples from it. Ordinary
lifted operations such as + and ∗ on Uncertain types cannot inspect
the representation to draw samples. This difference sets inference
operators apart from other operators.

To define the semantics for programs using inference operations,
we extend the Bayesian network representation to include both
ordinary nodes and inference nodes, I(x,List(e)), where x is a value
of an uncertain type and List(e) is a list of hyper-parameters. We
call this new representation a Decorated Bayesian Network (DBN).
Graphically, the entire program in Figure 7 produces the DBN shown
in Figure 9 (b), where the shaded circle is the mcmc_sample inference
operation. An inference node has exactly one incoming edge—the
distribution being inferred—and any number of out-going edges
indicating where the result is used. Here, the mcmc_sample node has
the sample-size as a hyper-parameter that is set to 1000. To execute a
DBN, an evaluator traverses the inference nodes in topological order,
extracts the sub-graph rooted at a given inference node, executes the
inference node on that sub-graph, and replaces the inference node
with the resulting distribution node.

Depicting a probabilistic program’s data flow using a DBN
helps reveal the advantages and pitfalls of using inference. Adding
inference helps satisfy engineering constraints in large applications.
By compacting a complex sub-graph in a Bayesian network to a
simple histogram representation, inference can make subsequent
operations more efficient, or it can let the program serialize a
distribution for storage on disk or transmission over a network. On

20

x

Gaussian(0.0,1.0)

ys samples

z λ x y. x + y

x
Gaussian(0.0,1.0)

y λ x. x * 2

mcmc_sample(y, 1000)

z λ x y. x + y

Figure 9: (a) Bayesian network calling inference. (b) The DBN for Figure 7.

Pr ::= s ; passert c

s ::= v← e | v← d | s ;s | skip | if c s1 s2 | while c s

c ::= e < e | e = e | e∧ e | e∨ e | ¬ e

e ::= I (v, List(e)) | e⊕ e | v | r | ulist (e)
I ::= enumerate | mcmc_sample | MLE | MAP | . . .

T ::= P |Uncertain (P) |UList (T)

P ::= int | float | double

r ∈ R, v : identifiers,

d ∈ Probability distributions,

⊕ : primitive operations

Figure 8: Syntax of FLEXI.

the other hand, adding inference introduces two potential sources of
error: dependence errors and approximation errors.

Dependence errors occur when an inference operation compacts
information, removing dependence edges from a graph. In Figure 7,
replacing the sub-graph rooted at y with the sampled node ys
eliminates the dependence between x and y. As a consequence,
sampling values at z can lead to incorrect behavior because the
correlation between the two y and z is ignored.

Approximation errors arise from the selection of the hyper-
parameters. For example, if mcmc_sample uses too few samples, the
resulting z might not faithfully approximate the sum.

Both problems arise when the program’s result does not match
a version with inference removed. Intuitively, inference operations
should be semantic no-ops, i.e., I(x,List(e)) ≡ x for a suitable
definition of ≡. Therefore, we can detect an inference-related bug
as follows. If a program fails to meet its statistical specification (its
passert), and removing an inference node from the program’s DBN
makes it satisfy the passert, then we blame the inference operation
for the bug.

A DBN is a generalization of a Bayesian network: i) every
Bayesian network is a DBN, and ii) every DBN without the inference
nodes is a Bayesian network. The first part is trivially true because
a Bayesian network is a DBN with no inference nodes. To prove
the second part, we argue that every DBN can be converted to
an equivalent Bayesian network. Consider the semantics of an
inference node—it is an additional node in the Bayesian network of
a program that summarizes the sub-graph rooted at it by inferring its

distribution, then drawing samples and compacting them. Removing
this node does not affect any of the ordinary nodes or the structure of
the original Bayesian network. Hence, every DBN can be converted
to a Bayesian network by removing the inference nodes.

5. DePP
DePP uses a combination of static and dynamic analyses to identify
the causes of errors in terms of the systematic classification from
Section 3.

5.1 Ignoring Dependence
Programs can ignore dependence in two ways: 1) by treating random
variables as independent when they are not, and 2) by executing
inference too early leading to an early approximation which in turn
causes loss of dependence information.

Treating random variables as independent when they are not.
To detect dependent random variables, DePP computes a correlation
matrix among all random variables in a probabilistic program. The
correlation coefficient is a number between−1 and +1 where values
close to ± 1 indicate highly positive or negative correlation and
values close to 0 indicate negligible correlation.

DePP finds the correlations by statically analyzing the Bayesian
network of the program and tracing its way up to the leaf nodes
corresponding to random variables. If the correlation coefficient
between two random variables is more than a threshold τ or less
than −τ, DePP marks them as correlation-dependent. DePP uses
the Spearman’s rank correlation coefficient [8], rs to compute the
correlation matrix. rs can determine any monotonic relationship
between two variables. Computation of rs is based on ranking of the
values of the two variables [8] which DePP obtains by sampling. If
there are k random variables in the program, DePP returns a k× k
matrix of correlation coefficients. DePP reports a bug if random
variables represented as independent nodes in the Bayesian network
are correlation-dependent. For instance, it detects if two distinct
inputs are dependent.

Premature inference. DePP statically analyzes the Bayesian net-
work of a program to detect whether dependence information is
lost due to wrong inference calls. For every inference call, DePP
adds an inference node to the Bayesian network to generate a DBN.
It then traverses the DBN to detect dependence errors, treating it
as a graph problem. A DBN should be rejected if there exists any
node Q that has two or more distinct paths to some ancestor P and
any node (other than P or Q) on any of those paths is an inference
node. This relationship is an error because inference calls on any
of the intermediate nodes would lead to loss of information about
their dependence on the common parent P. Consequently, estimating
the distribution of the common child node Q will lead to incorrect
samples.

Gaussian noise = new Gaussian(0.0, 1.0);
var noisy_t_h = from n in noise

from t in (Uncertain <double >)t1
from h in (Uncertain <double >)h1
select Tuple.Create(n+t, n+h);

controlHvacSystem(noisy_t_h);

Figure 10: Correct implementation of noisy communication channel adding
noise to a (t,h) pair.

To illustrate, consider again the programs in Figures 1 and 7. As
described earlier, y and z depend on the same x but due to the call
to mcmc_sample in Figure 7, this dependence information is lost, as
illustrated in Figure 9(b). The correct graphical representation of the

21

Gaussian noise = new Gaussian(0.0, 1.0);
var noisy_t_h = from n in noise

from t in (Uncertain <double >)t1.mcmc_sample (1000)
from h in (Uncertain <double >)h1.mcmc_sample (1000)
select Tuple.Create(n+t, n+h);

controlHvacSystem(noisy_t_h);

Figure 11: Incorrect implementation of noisy communication channel
adding noise to a (t1,h1) pair.

program is the graph in Figure 2. The nodes for y and z both have an
incoming edge from node x, implying that to infer the distribution
of z, the same set of sample values from x should be used that are
used for inferring y. In other words, y and z both depend on x. DePP
would detect the incorrect call to mcmc_sample on y.

5.2 Incorrect Hyper-parameters
DePP identifies approximation errors by exploring the hyper-
parameter space in a systematic way and suggesting good ones
using a dynamic meta-inference technique. The meta-inference
uses inference on the hyper-parameters that are themselves used in
inference algorithms. This algorithm lets the developer fix a prior
distribution over the hyper-parameter to be inferred and maximizes
its likelihood while ensuring that the correctness or performance
requirement of the actual program is satisfied. The hyper-parameter
for the same inference algorithm might require re-tuning depending
on the application. The overall correctness criterion is given by the
following instantiation Bayes’ rule. Let us assume that a program
involves the hyper-parameter h and let the correctness criterion be
C.

P(program is correct)
= P(C is met∧h is good)

= P(C is met | h is good)∗P(h is good)

Similarly, if the goal is to attain a certain performance, say, D, then
the rule is given by:

P(program satisfies performance criterion)
= P(D is met∧h is good)

= P(D is met | h is good)∗P(h is good)

where “h is good” implies that the value of h that is chosen
maximizes its likelihood function.

We implemented meta-inference as an extensible library with
algorithms for three types of hyper-parameters: sample size n,
learning rate α, and top-k. Whenever the programmer has to select a
hyper-parameter, she can call the respective meta-inference method
from the library and it will select the hyper-parameter for her. For
every hyper-parameter, DePP has some built-in prior probability
distributions but the programmer can also add new distributions
and/or change the parameters of the existing ones.

5.2.1 Meta-inference for Sample Size
Definition. Let us consider k samples, each of size n being drawn
from a distribution. We define the best sample of size n to be the
one that has minimum sample variance. Further, if there are t best
samples of sizes n1,n2, ...nt , the best sample among those is the one
with least in-sample variance.

In most real applications, the posterior distribution from which
the samples are drawn may not have a closed form, and so knowing
the population parameters may not be possible. Hence, DePP uses
the above empirical measure to determine the goodness of a sample
of a given size. If however more information about the posterior is

available, such as the mean, then DePP also minimizes the difference
between the sample mean and population mean.

DePP currently uses a Truncated Geometric prior for inferring
the sample sizes. The probability density function is given as:

ftg(x | p, lo,up) =

{
p(1−p)x

F(up)−F(lo) lo≤ x≤ up

0 elsewhere

where F(x) is the cumulative density function of the Geometric
distribution, defined as: F(x) = 1− (1− p)x+1. We chose a Trun-
cated Geometric because it is discrete and allows flexible upper and
lower bounds for drawing samples from. The form of the prior is
such that DePP is bound to select lower sample sizes with higher
probability in order to maximize its likelihood. The programmer can
use default values or specify lo, up and p of the prior, where lo and
up are respectively the lower and upper bounds on the sample size.
The optimal value of n found by DePP is then given by:

argmax
n

(
L(p, lo,up | n)

var(Sn)

)
(1)

where L(p, lo,up | n) = ftg(x | p, lo,up) is the likelihood of the prior
over n and var(Sn) is the sample variance of the n samples drawn
from the underlying distribution.

5.2.2 Meta-inference for α

The learning rate α is a hyper-parameter that trades off the speed
of learning in algorithms such as MAP and MLE [19] and data
fitting. A higher learning rate ensures faster learning but a slower
learning rate ensures that there is less over-fitting [20]. To balance
this trade-offs, a programmer sets a prior probability distribution
so that different learning rates have probabilities of being selected
associated with them. For example, in linear regression, it could
be desirable that the error during learning drops below a certain
threshold after a certain number of iterations. The task of DePP is
then to choose the value of α that maximizes the likelihood of the
prior while also ensuring that the error drops below the threshold, ε

within the required number of iterations. To that end, DePP seeks an
α optimizing h(α), defined as:

h(α) =

(
f (α)

number of iterations until ∆e≤ ε

)
(2)

where ∆e = |ei − ei+1|, i.e., the change in error during training
between two iterations and f (α) is the likelihood of α.

5.2.3 Meta-inference for Top-k
Top-k is a hyper-parameter used in systems that require the highest
probability values from a discrete distribution. An example of such
a system is a search engine. A search algorithm typically takes a
query q and a set of documents and return the best k matches. This
approach entirely rules out the possibility of showing a result that is
slightly lower ranked but might be useful for the client. A different
approach that explicitly exposes the uncertainty in the search model
would return top scoring k′ documents and includes some additional
k′′ documents that match q, but are not in the top-k.DePP finds
the value of k using meta-inference. In the implementation of
meta-inference algorithm for top-k, we chose the prior for k as:
ftg(k | 0.001,1, matches.Count), where matches.Count represents
the total number of documents matching q. A simple correctness
criterion which we implemented in DePP is that the best ranked
document should always be returned as part of the k documents. In
other words, DePP draws a sample from the list of documents that
matched q and checks whether the sample at least contains the best
scored document.

22

N
Gaussian(0.0,1.0)

t1 h1t2 h2tn hn

M

.

Figure 12: Bayesian network showing the correct dependence between
temperature, humidity and noise. n=100.

variables # noisy data significance analysis time
(ti,hi) 40 high 25.60 s

t1, t2, ... 27 low 9.20 s
h1,h2, ... 54 low 8.91 s

Table 1: Results of using DePP for detecting dependence among random
variables on a dataset of 100 pairs of temperature and humidity readings [4].
We mark correlation ≥ 0.7 as high.

5.3 Incorrect Statistical Model and/or Poor Data
If all the previous approaches for detecting the cause of error fail,
then DePP ultimately tries to check for the last cause of failure—
an incorrect statistical model and/or inaccurate or insufficient data.
DePP does this dynamically. It runs the program multiple times in
order to ensure that there are sufficient samples from the posterior
distribution represented by the program. This determines if the error
is due to insufficient sampling. If a very large sample size also leads
to failure of the passert, then DePP concludes that the statistical
model itself is wrong or the data (if any) is bad. This approach
exploits the Law of Large Numbers (LLN), which guarantees that
as the sample size n −→ ∞, the sample mean, µ̂, converges to the
population mean, µ, with high probability (weak LLN) or almost
surely (strong LLN).

6. Case Studies
This section presents case studies illustrating different bugs related
to dependence and approximation errors and the use of DePP in
detecting them. We ran all experiments on a machine running 64-bit
Windows 10 with 2.3 GHz, Core i3 processor.

6.1 Dependence Error
This section illustrates the use of DePP for finding dependence
bugs, focusing on the two types of dependence bugs described in
Section 3—incorrectly treating random variables as independent,
and incorrectly performing inference at wrong program points.

6.1.1 Correlation between Random Variables
Consider a monitoring system in a home which records temperature
and relative humidity and sends them over a noisy communication
channel to a central hub [36]. The data from the hub is used to
control an HVAC system.

The communication channel induces Gaussian(0.0, 1.0) noise
on temperature and humidity values at random. To simulate the
system, we used 100 pairs of readings from a real dataset [4] that
records temperature and relative humidity among other quantities
from a monitoring system and implemented the noisy communica-
tion channel in FLEXI, as Figure 10 shows. Due to the noise, the
data is lifted to uncertain types at the other end of the channel.
These uncertain temperature and humidity pairs cannot be treated
as independent random variables—they are correlated because the
noise added to them is the same.

We used DePP to perform two types of correlation analyses: 1)
between every pair of temperature and humidity readings, 2) be-
tween a sequence of temperature readings, and between a sequence
of humidity readings. Table 1 summarizes the results.

6.1.2 Incorrect Inference Call Leading to Loss of
Dependence Information

Consider again the monitoring system described in Section 6.1.1.
As mentioned previously, the monitor sends pairs of (ti,hi) values
over a Gaussian(0.0, 1.0) channel such that the noise added to ti
is the same as that added to hi, for i ∈ 1,2, ...,100. The Bayesian
network for this program is shown in Figure 12. t and h are used
in the hub for further computations such as controlling an HVAC
system [36]. This adds another node, M to the Bayesian network
as shown in Figure 12. Making calls to inference methods such
as mcmc_sample at ti or hi, shown in Figure 11 would ignore their
dependence on the same noise which is a bug because according to
the design of the noisy channel, for a pair of (ti,hi) values, the noise
should be the same. It would end up creating independent noise
variables for temperature and humidity as shown in the Bayesian
network in Figure 14. We ran DePP on this incorrect implementation
of the monitoring system and it successfully detected each of these
early inference calls in less than 8 milliseconds.

6.2 Approximation Error
This section describes using DePP for dynamically selecting hyper-
parameters for inference.

6.2.1 Sample Size
Consider the probabilistic program shown below which draws
samples from an exponential posterior distribution with parameter
2.0.

Func <int, Uncertain <double >> F = (n)
=> mcmc_sample(new Exponential(2.0), n);

The correctness condition for this program is simply that the sample
should be good enough, i.e., sufficient to describe the distribution. In
this case, since the mean of the population is known (Exponential(λ)
has mean 1/λ, which is 0.5 in this case), DePP finds the best sample
size and the corresponding sample by minimizing the difference be-
tween sample mean and population mean together with minimizing
sample variance as explained earlier. To use DePP’s meta-inference,
the programmer invokes DebugSampleSize(F,0.5, ftg(p, lo,up)), a
method from the meta-inference library, which optimizes Equa-
tion 1. Figure 13 shows the measure of overall goodness of the
sample drawn against the different values of n when (p, lo,up) is
set to (0.001, 75, 1000). DePP suggests the best value, n = 178 and
also returned the best sample of this size. The two red circles in
Figure 13 compare the values of the ratio of likelihood to variance
shown in Equation 1 indicating that the value picked by DePP was
the best in the given range.

6.2.2 Learning Rate, α for Linear Regression
We used DePP to infer the value of α by maximizing Equation 2,
for a linear regression model we trained on a binary classification
dataset obtained from the LIBSVM website [2, 30]. The dataset has
2 classes, 22 features and 49,990 training examples. It represents
time series data from a 10-cylinder internal combustion engine
which was used in a neural network competition at the Ford Research
Laboratory [30]. Figure 15 shows the variations in the value of h(α)
as α changes.

23

Query top-k # of matches

algorithm 6 10
artificial 4 10
machine 6 9
inference 4 6
statistical 7 5

Table 2: Search queries, final top-k and total number of matched documents.
As explained in section 5.2.3, the top-k results returned by our search engine
always contains the top ranked document.

Benchmark p time with MI time without MI

LR α 0.04 0.05
SE top-k 100.70 62.10
Exp n 17.40 0.10

Table 3: Execution times (in s) for the benchmarks for Meta-Inference(MI).
LR SE and Exp are shorthand for Linear Regression, Search Engine and the
Exponential distribution example for n.

L(
p,

 lo
, u

p
| n

)
va

r (
S n)

n

0.0029

0.0022

Figure 13: Values of sample size against measure of the ratio of likelihood to
variance from Equation 1. The value of n chosen by DePP is 178 (indicated
by the left red circle). The two red circles compare two particular values of
n to show that the ratio doesn’t change significantly even for n close to 900
(in fact, it was slightly lower for the latter).

N1
Gaussian(0.0,1.0)

N2
Gaussian(0.0,1.0)

t1 h1t2 h2tn hn

M

.

Figure 14: Bayesian network showing early inference.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.02 0.04 0.06 0.08 0.1 0.12

h
(α

)

α

Figure 15: Values of α vs h(α). Since h(α) is maximum at ∼ 0.001, DePP
would suggest this value of α to be used for learning.

6.2.3 Top-k
We implemented a search engine using the Lucene [3] library which
provides an API for scoring and indexing documents. We ran the
search engine on a real dataset of 50,000 queries on a conference
database [1]. Lucene takes a query q, pre-processes it, finds matches,
scores them, and returns the top-k documents that match the query.
Although top k is a hyper-parameter, many search engines, in-
cluding Lucene, pick a single value for k and do not statistically
tune this value as their system evolves. In our implementation
DePP automatically infers k for each query as explained in sec-
tion 5.2.3. Table 2 shows the final values of top-k inferred by DePP
for five queries: algorithm, artificial, machine, inference,
and statistical.

Table 3 shows the time taken to run the above three case studies
with and without meta-inference (i.e., with hard-coded values of the
hyper-parameters). For measuring the time for linear regression, we
hard-coded the same value of α that DePP picked. For the search
engine, we used k = 3 as the default and computed the sum of the
execution times for all 5 queries. For sample size n, we used a hard-
coded value of 1000. As the table shows, there is no significant
effect in the performance of the benchmarks after integrating meta-
inference.

7. Related Work
A variety of probabilistic programming models [7, 21, 27, 31] intro-
duce efficient sampling techniques [5, 18] and tools for verification
and synthesis of probabilistic programs [6, 9, 23–25, 33]. This sec-
tion describes the relevant previous work in these areas.

Probabilistic programming languages The statistics, machine
learning, and programming languages communities have recently
reignited interest in probabilistic programming languages. These
languages let domain experts specify statistical models in the fa-
miliar environment of a traditional programming language and sup-
ply generic statistical inference algorithms to estimate the model’s
parameters. Inference can either use exact methods for restricted
categories of programs [14, 34] or sampling strategies such as
MCMC, which work for general programs but introduce estima-
tion error [5, 11, 28]. Recently, Hur et al. [18] found accuracy prob-
lems in existing MCMC-based sampling algorithms for probabilistic
programming languages.

The key difference with this work is that the probabilistic
programming languages literature focuses on small programs where
statistical inference occurs only once. Typically, the programmer
specifies a single statistical model from which a single result is
produced by sampling the entire program. Sampling-based systems
report their margin of error to the user but do not consider the impact
of estimation error when a program uses the results of statistical
inference for further computations. This one-shot inference pattern
describes popular probabilistic programming languages such as
Church [17], Infer.NET [22], R2 [11]; MAYHAP [33], which can
only verify a single passert per program; and Uncertain〈T〉 [7],
which does not track dependence past a statistical test.

Inference Inference can either use exact methods for restricted
categories of programs [14, 34] or sampling strategies such as
MCMC, which work for general programs but introduce estimation
error [5, 11, 28]. Recently, Hur et al. [18] found accuracy problems
in existing MCMC-based sampling algorithms for probabilistic
programming languages. In WebPPL [16] and Figaro [29], programs
make explicit calls to inference similar to our model. This choice

24

makes the programming model much more flexible and gives the
programmers freedom to compose inferences in many more ways
compared to other models. Additionally, DePP also ensures that
multiple inference calls compose correctly.

Hyper-parameters Domingos points out how machine learning
exhibits errors and some methods for avoiding them [13]. R2 [5] is
an efficient MCMC sampler that relies on program analysis and
is much faster compared to other samplers. MAYHAP [33] and
Uncertain〈T〉 [7] automatically compute the sample sizes based
on known statistical results such as Chernoff bound [12] and
sequential probability ratio tests [35] respectively. DePP goes further
by automating the inference of other hyper-parameters such as top-k
and learning rate in addition to sample size.

Verification, debugging, and synthesis A recent framework called
PrivInfer [6] can prove differential privacy of programs that imple-
ment Bayesian machine learning algorithms by using relational
refinement types. Type system based approaches [9, 32] check cor-
rectness by introducing types to represent probabilistic or approxi-
mate data. The Rely [10] programming model uses program analysis
to check whether an approximate program satisfies the reliability
specifications. Stochastic contracts [24] have been used for real time
systems to dynamically check bounds for worst case execution times.
Probabilistic programming is not the only domain where debugging
is complicated by non-determinism—debugging concurrent pro-
grams for example is extremely challenging due to non-determinism
in thread scheduling [26]. Fortunately, in the probabilistic program-
ming domain, we can control the non-determinism to some extent
by controlling the seeds of the random number generators.

8. Conclusions
We presented a formalism based on Decorated Bayesian Networks
(DBN) to represent statistical inference in probabilistic programs.
Based on DBN, we implemented a debugger, DePP, that automati-
cally detects errors specific to probabilistic programs and demon-
strated it on example programs. DePP is the first debugging tool ded-
icated to probabilistic programs. It uses a combination of techniques
covering two domains—programming languages and statistics. For
instance, lifting ordinary computations to monadic bind operators
and analyzing the structure of the resulting Bayesian network to
track dependence is a core programming language technique while
tuning hyper-parameters for inference algorithms is a statistics tech-
nique. On the other hand, analyzing a program’s Bayesian network
to identify the random variables at the leaves and finding a correla-
tion matrix among them is a combination of both. For probabilistic
programs, knowing the exact cause of an error is difficult because
on top of usual programming errors, they may also have errors due
to approximation, dependence, incorrect models and poor data. Con-
sequently, the fact that DePP combines both statistical analysis and
program analysis is valuable since prior to finding a bug, one cannot
know which field’s techniques are applicable.

Acknowledgements
We thank Archibald Samuel Elliott for insightful conversations
regarding the semantics of FLEXI. We also thank various members
of the UW PLSE lab for their feedback on earlier versions of the
paper. We are very grateful to the anonymous reviewers for their
helpful comments.

References
[1] Microsoft Academic Graph. https://academicgraph.blob.core.

windows.net/graph-2016-02-05/index.html.

[2] LIBSVM Data: Classification (Binary Class). https://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

[3] LUCENE.net seach engine library. https://lucenenet.apache.
org/.

[4] UCI Machine Learning Repository. https://archive.ics.uci.
edu/ml/datasets/SML2010.

[5] S. R. Aditya Nori, Chung-Kil Hur. R2: An efficient MCMC sampler for
probabilistic programs. In AAAI Conference on Artificial Intelligence
(AAAI). AAAI, 2014.

[6] G. Barthe, G. P. Farina, M. Gaboardi, E. J. G. Arias, A. Gordon, J. Hsu,
and P.-Y. Strub. Differentially private bayesian programming. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 68–79, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.
2978371. URL http://doi.acm.org/10.1145/2976749.2978371.

[7] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain<T>: A
first-order type for uncertain data. In International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[8] S. Boslaugh and P. Watters. Statistics in a Nutshell: A Desktop
Quick Reference. In a Nutshell (O’Reilly). O’Reilly Media, 2008.
ISBN 9781449397814. URL https://books.google.com/books?
id=ZnhgO65Pyl4C.

[9] B. Boston, A. Sampson, D. Grossman, and L. Ceze. Probability type in-
ference for flexible approximate programming. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2015.

[10] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative
reliability of programs that execute on unreliable hardware. In OOPSLA,
2013.

[11] A. T. Chaganty, A. V. Nori, and S. K. Rajamani. Efficiently sampling
probabilistic programs via program analysis. In AISTATS, 2013.

[12] H. Chernoff. A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations. The Annals of Mathematical
Statistics, pages 493–507, 1952.

[13] P. Domingos. A few useful things to know about machine learning.
CACM, 55(10):78–87, 2012.

[14] T. Gehr, S. Misailovic, and M. T. Vechev. PSI: exact symbolic inference
for probabilistic programs. In Computer Aided Verification (CAV),
2016.

[15] W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs
sampling. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 41(2):337–348, 1992. ISSN 00359254, 14679876. URL
http://www.jstor.org/stable/2347565.

[16] N. D. Goodman and A. Stuhlmüller. The Design and Implementation
of Probabilistic Programming Languages. http://dippl.org, 2014.
Accessed: 2016-10-10.

[17] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: A language for generative models. In UAI, 2008.

[18] C.-K. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. A provably
correct sampler for probabilistic programs. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 2015.

[19] A. Kak. ML, MAP, and Bayesian The Holy Trinity of Parameter
Estimation and Data Prediction. https://engineering.purdue.
edu/kak/Trinity.pdf, 2014. Accessed: 2016-11-1.

[20] W. M. Koolen, T. v. Erven, and P. D. Grünwald. Learning the learning
rate for prediction with expert advice. In Proceedings of the 27th
International Conference on Neural Information Processing Systems,
NIPS’14, pages 2294–2302, Cambridge, MA, USA, 2014. MIT Press.
URL http://dl.acm.org/citation.cfm?id=2969033.2969083.

[21] D. Kozen. Semantics of probabilistic programs. In Symposium on
Foundations of Computer Science, pages 101–114, Oct 1979.

[22] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.5, 2012.
Microsoft Research Cambridge. http://research.microsoft.com/
infernet.

25

[23] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard. Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2014.

[24] C. Nandi, A. Monot, and M. Oriol. Stochastic contracts for runtime
checking of component-based real-time systems. In Proceedings of the
18th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, CBSE, 2015. ISBN 978-1-4503-3471-6. URL
http://doi.acm.org/10.1145/2737166.2737173.

[25] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy. Efficient
synthesis of probabilistic programs. SIGPLAN Not., 50(6):208–217,
June 2015. ISSN 0362-1340. doi: 10.1145/2813885.2737982. URL
http://doi.acm.org/10.1145/2813885.2737982.

[26] C.-S. Park and K. Sen. Concurrent breakpoints. SIGPLAN Not., 47(8):
331–332, Feb. 2012. ISSN 0362-1340. doi: 10.1145/2370036.2145880.
URL http://doi.acm.org/10.1145/2370036.2145880.

[27] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based
upon sampling functions. In POPL, 2005.

[28] A. Pfeffer. A general importance sampling algorithm for probabilistic
programs. Technical Report TR-12-07, Harvard University, 2007.
ftp://ftp.deas.harvard.edu/techreports/tr-12-07.pdf.

[29] A. Pfeffer. Figaro: An object-oriented probabilistic programming
language. Technical report, Charles River Analytics, 2009.

[30] D. Prokhorov. Ijcnn neural network competition. 2001. http:
//www.geocities.ws/ijcnn/nnc_ijcnn01.pdf.

[31] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, 2002.

[32] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[33] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze. Expressing and verifying probabilistic assertions.
In ACM Conference on Programming Language Design and Implemen-
tation (PLDI), 2014.

[34] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: Inferring whole program properties from
finitely many paths. In PLDI, 2013.

[35] A. Wald. Sequential Tests of Statistical Hypotheses, pages 256–298.
Springer New York, New York, NY, 1992. ISBN 978-1-4612-0919-5.
doi: 10.1007/978-1-4612-0919-5 18. URL http://dx.doi.org/10.
1007/978-1-4612-0919-5_18.

[36] F. Zamora-Martnez, P. Romeu, P. Botella-Rocamora, and J. Pardo.
On-line learning of indoor temperature forecasting models towards
energy efficiency. Energy and Buildings, 83:162 – 172, 2014.
ISSN 0378-7788. doi: http://dx.doi.org/10.1016/j.enbuild.2014.04.
034. URL http://www.sciencedirect.com/science/article/
pii/S0378778814003569.

26

