
Using Mutation Testing To Improve and Minimize
Test Suites for Smart Contracts

Enzo Nicourt
Runtime Verification

France

Benjamin Kushigian*

University of Washington
USA

Chandrakana Nandi
Certora Inc.

USA

Yliès Falcone
Runtime Verification

France

Abstract—This paper presents a successful industrial case
study on the application of mutation testing to evaluate and
improve test suites for smart contracts. ERCx is a comprehensive,
hand-written test suite and framework for smart contract test-
ing, created by Runtime Verification. Despite its thoroughness,
hand-written tests can miss edge cases. To address this, we
employed mutation testing, which introduces small, syntactic
changes, known as mutants, to the program. Mutants that go
undetected by the test suite highlight its potential weaknesses,
and by presenting them as testing goals, mutation testing helps
developers iteratively improve their test suites. In this study, we
used mutation testing to expand the ERCx test suite with five
new test cases, including one potential vulnerability identified
as critical by the ERCx developers. We also developed a test
redundancy metric by analyzing pairwise correlation of test data
on mutants; we used this redundancy metric to minimize the
test suite by removing redundant tests. Finally, we ran both the
full and minimized test suites on 106 real-world, faulty ERC-
20 contracts to compare the suites’ effectiveness and efficiency.
Our findings reveal that although the minimized test suite has
systematically lower running times compared to the full suite, it
still detected faults in 105 of the 106 real-world tokens, retaining
nearly all of the full suite’s fault-detection capability.

Index Terms—Mutation Testing, Smart Contracts, Test mini-
mization

I. INTRODUCTION

In this paper we present an industrial case study on the use

of mutation testing to improve and minimize a comprehensive,

hand-written test suite for smart contracts.

Smart contracts are programs that carry out financial trans-

actions and run on blockchains like Ethereum [1], Solana

[2], and Hyperledger [3]. These programs are written in

a variety of languages like Solidity [4], Vyper [5], Rust,

etc. Vulnerabilities in smart contracts have been exploited

to cause serious financial losses—examples of such exploits

are, unfortunately, far too common [6]. The immutability of

the blockchain exacerbates the problem—once an error-prone

version of a contract is deployed on the blockchain, it cannot

be modified. Testing, fuzzing, auditing, and verifying smart

contracts are therefore well-studied topics [7]–[18].

Transactions on blockchains are often conducted by ex-

changing cryptocurrencies, or tokens. While Ether is the

official token of the Ethereum blockchain, Ethereum allows

users to create and exchange their own tokens. According

to blockchain explorers [19], there are currently hundreds of

* Majority of the work done during an internship at Certora Inc.

thousands of tokens on the Ethereum blockchain with 1,000

tokens created daily and a total market cap in the billions of

dollars.

To standardize the process of developing new tokens and

facilitate interoperability, the Ethereum Foundation has devel-

oped APIs which tokens must implement, along with a set

of standards those implementations should comply with. The

most common standard is called ERC-20 [20]–[22].

However, standards like ERC-20 are merely suggestions,

and nothing prevents developers from writing custom API

implementations that do not conform to the standards (e.g.,

for improved performance). This non-conformity often results

in faulty token implementations, and these faults can cause

serious vulnerabilities.

Over the years, many security vulnerabilities in token

contracts have been exploited, (e.g., the infamous DAO at-

tack [23], [24]), and have led to hundreds of millions of dollars

in losses.

Rigorous testing prior to smart contract deployment is a

simple, effective way to help prevent vulnerabilities. Engineers

and researchers at Runtime Verification [13] developed the

ERCx test suite for checking the compliance of token imple-

mentations with their respective standards along with other

correctness properties 1.

Developing a comprehensive test suite is challenging—

engineers can only write tests to catch faults they anticipate.

But what about tests to prevent faults the developer did

not anticipate? Mutation testing [25], [26] is an approach

for finding these missing tests—it systematically introduces

program faults, called mutants, that a test suite should be able

to detect. Undetected mutants witness potential shortcomings

in a test suite (e.g., an unanticipated fault) and can guide a

developer to improve the suite by writing tests to detect these

faults.

This paper leverages mutation testing to improve the ERC-

20 test suite in ERCx. The work was done jointly by teams

at Runtime Verification [13], Certora [14], and University of

Washington. Despite human effort invested in ensuring the

robustness of the test suite, mutants generated by the Gambit

tool 2 from Certora Inc., [14] resulted in undetected mutants

that ERCx could not detect, exposing weaknesses in the test

1https://runtimeverification.com/blog/testing-erc-20-tokens-part-1
2https://github.com/Certora/gambit

341

2024 IEEE Conference on Software Testing, Verification and Validation (ICST)

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00038

interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address to, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address from, address to, uint256 amount) external returns (bool);

}

Fig. 1: Key functions in the ERC-20 interface in the Solidity programming language. address is a type in Solidity that

represents the address of a contract when it is deployed on the blockchain. A view function can only read the state of the

contract and return a value.

suite. We used these undetected mutants as test goals to

strengthen the test suite by adding new tests.

We also developed a test redundancy metric based on tests’

ability to detect each mutant, and used this metric to minimize
the test suite. We compared the full and minimized test suites’

effectiveness and efficiency for discovering real-world faults

by running both suites on 106 faulty real-world contracts.

While the minimized test suite was more efficient than the full

test suite, having lower running time for nearly all contracts,

it still detected faults in 105 of 106 contracts, showing that it

is nearly as effective at real-world fault detection as the full

test suite. The modified ERCx test suite is publicly available

for the Solidity developer community 3 . Our methodology for

improving test suites can be extended to support other smart

contract standards like ERC-4626 and ERC-1155.

In summary, the contributions of this paper include:

• Using mutation testing to find five missing tests in a

robust, industry scale smart contract testing framework,

ERCx.

• Leveraging a redundancy metric based on tests’ ability to

detect mutants to minimize test suites.

• An evaluation on 106 real-world, faulty ERC-20 tokens

showing that the minimized test suite is more efficient

than the full test suite while retaining nearly all of the

full suite’s efficacy.

The rest of the paper is organized as follows: Section II

offers background on ERC-20 and mutation testing, Section III

presents the ERCx test suite, Section IV describes how we

used mutation testing to add new tests to the ERCx test

suite, Section V discusses our results and the minimization

algorithm, Section VI presents key lessons learned, limitations

and future work, Section VII discussed relevant related work,

and Section VIII concludes.

II. BACKGROUND

This section offers background on the standard ERC-20 in-

terface and mutation testing. The work in this paper targets the

Solidity programming language [4] which is one of the most

commonly used languages for developing smart contracts 4 for

the Ethereum blockchain [1].

3https://ercx.runtimeverification.com
4https://chain.link/education-hub/smart-contract-programming-languages

A. ERC-20

ERC-20 is a standard [20] for enabling interoperability

across different tokens. As part of the standard, the ERC-

20 proposes an API that all tokens must implement to be

considered an ERC-20 token. Figure 2 shows the ERC-20

interface in Solidity. The API consists of six core functions:

The totalSupply function returns the total number of tokens

in circulation. The balanceOf function allows users to check

the balance of a specific account. The transfer function

enables the transfer of tokens from one account to another.

The transferFrom function allows a third party to transfer

tokens on behalf of an account that has approved them to do

so. The approve function allows an account to approve another

account to spend a certain number of tokens. The allowance

function allows an approved account to check the amount of

tokens they can spend on behalf of another account. These

are all the external functions of the contract, but they often

invoke other functions that are internal, which means that they

can only be called by other functions from within the contract

itself. A view function (allowance and balanceOf) indicates

that it can only read the storage of the contract but not write

to it. address is a Solidity datatype that represents a 20 byte

Ethereum address. More details about the qualifiers and types

can be found in the Solidity documentation [4].

B. Mutation Analysis and Testing

Mutation analysis [28], [29] is an automated technique that

uses systematically generated program faults called mutants to

evaluate a test suite’s efficacy. The faults are typically small,

syntactic changes (e.g., changing operators, changing literal

values, altering branch conditions). The test suite is run on

the generated mutants, each acting as a proxy for a real-world

bug. We say that a mutant is detected by a test suite if it

fails some test that the original program passed. Stronger test

suites should, on average, detect more bugs than weaker test

suites and mutation analysis captures this with the mutation
score metric, which is defined to be #(detected mutants) /

#(generated mutants). Stronger test suites correspond to higher

mutation scores.

Mutation testing [25], [26] is a technique where a de-

veloper is presented with undetected mutants as test goals;

the developer creates new tests to detect these mutants. The

goal of mutation testing is not necessarily to get a perfect

342

Fig. 2: Workflow for using mutants to develop new tests—we started with ERCx’s manually written test suite. We used

mutation testing to synthesize faulty versions of a canonical implementation of ERC-20 [27]. We then ran the test suite on all

the mutants; we added new tests to the test suite based on any undetected mutants that passed all the original, hand-written

tests.

mutation score, which is often infeasible. Rather, mutation

testing iteratively strengthens a test suite over time.

III. ERCX DESIGN PRINCIPLES

ERCx is an extensible testing framework created by Run-

time Verification [13] and designed for Ethereum-based to-

kens. Currently, it supports testing of ERC-20 tokens, one of

the most common tokens in the Ethereum blockchain [19].

Developers are actively extending ERCx to support additional

standards like ERC-4626, ERC-721, etc. ERCx executes prop-
erty tests [30], that is, tests that directly evaluate properties

(e.g., invariants) or contract features. ERCx categorizes tests

into five main categories: critical, recommended, desirable,

fingerprint, and ABI.
The critical category contains tests that cover the basic

requirements of the ERC-20 standard and must be satisfied.

Tokens that pass the critical tests comply with the ERC-20

standard. The recommended category includes tests that cover

more advanced features of the ERC-20 standard, such as the

allowance mechanism, events, and token-burning functionality.

These tests are recommended for tokens that wish to go be-

yond the basic requirements of the ERC-20 standard and offer

additional functionality to their users. The desirable category

includes tests that cover features beyond compliance and are

desirable for tokens seeking to provide a more robust user

experience and higher security. These tests cover features such

as gas optimization, reentrancy protection, and token recovery

functionality. The fingerprint category includes tests that are

specific to certain implementation choices. The ABI category

includes tests that check whether a token conforms to the ERC-

20 specification regarding the Application Binary Interface

(ABI). By categorizing tests in this way, ERCx provides a

set of tests that covers a wide range of token functionality,

from the basic requirements of the ERC-20 standard to more

advanced features and desirable functionality. This test suite

was designed to adequately represent the ERC-20 specification

and indicates a best-effort attempt to capture the constraints

of ERC-20.

ERCx Execution Model. To run its tests on a deployed

smart contract, the ERCx framework creates a fork of the

Ethereum blockchain environment using the Forge tool [31]

by establishing a remote procedure call (RPC) endpoint. ERCx

interacts with the latest state of the blockchain through the

RPC to query and alter the state of the contract during testing.

For example, it may query for a balance or initiate a token

transfer. Connecting to the blockchain through an RPC can

introduce variability in the running times of ERCx.

IV. METHODOLOGY

A. Test Selection

We filtered the ERCx test suite to only retain those from

the critical, recommended, and desirable categories, since

these are the categories that are most important for functional

correctness and security of the contracts. This led to 57 tests:

18 critical, 2 recommended, and 37 desirable.

B. Selecting a Canonical ERC-20 Reference Implementation

Mutation analysis requires that all tests in a test suite pass

when run on the original program: if there are faults in the

original program then a test failing on a mutant may be

due to a fault in the original program rather than the test’s

ability to detect the fault introduced by the mutant. Thus

it is critical to perform mutation analysis on a high-quality

canonical reference implementation of the ERC-20 contract.

We selected OpenZeppelin’s publicly available implemen-

tation of ERC-20 as our canonical reference implementa-

tion [27]. The OpenZeppelin implementation, which is com-

prised of 316 LoC of Solidity, has been heavily audited by

security experts, and it has had many important correctness

properties formally verified [14], [32].

343

〈gambit conf 〉 ::= mutation task+

〈mutation task〉 ::= filename solc? contract? function*
mutation op* solc arg*

〈filename〉 ::= string 〈contract〉 ::= string

〈function〉 ::= string 〈solc〉 ::= string

〈mutation op〉 ::= BOM | UOM | RSM

| ASM | DEM | ISM

| SOM | SLM | EDM

〈solc arg〉 ::= optimize | remappings | ...

Fig. 3: Syntax of the core subset of Gambit’s configuration

language. The mutation operators are defined in Section IV-C.

sol arg supports a variety of arguments supported by various

Solidity versions.

C. Mutant Generation

Gambit5 is an open-source, state-of-the-art mutant generator

for Solidity smart contracts, developed by Certora [14]. Gam-

bit mutates Solidity source code by traversing the program’s

Abstract Syntax Tree (AST) and applying predefined rules,

called mutation operators, to alter the program’s syntax.

Mutants generated by Gambit are first order [33], i.e., each

mutant has a single change. Gambit uses a standard set of

mutation operators that are inspired by prior work [34]–[36].

Gambit only generates mutants; Gambit’s client decides

how the mutants will be used. For example, the mutants can

be used to evaluate test suites or formal specifications. In

this paper we used Gambit to evaluate ERCx’s test suite for

ERC-20 tokens. As another example, at Certora, Gambit is

integrated with the formal verification tool, CVT [37]. Gambit

is actively being developed—in this paper we used commit

88e145b of the tool. This version of Gambit supports the

following mutation operators:

• Binary Operator Mutation (BOM): Replace binary oper-

ators, +,−,×, /, ∗∗,% with a different operator.

• Unary Operator Mutation (UOM): Replace unary opera-

tors, ++,−−,∼ with a different operator.

• Require Statement Mutation (RSM): Replace the condi-

tion of a require statement with true and false.

• Assignment Statement Mutation (ASM): Change the right-

hand side of a Boolean assignment statement with true

and false, and the right-hand side of an integer assign-

ment statement with −1, 0, 1.

• Delete Expression Mutation (DEM): Comment out an

expression.

• If Statement Mutation (ISM): Replace the condition of an

if statement or change it to true and false.

• Swap Operator Mutation (SOM): Swap the operands of

a non-commutative binary operator.

• Swap Lines Mutation (SLM): Swap two consecutive lines

of code.

5https://github.com/Certora/gambit

• Eliminate Delegate Call Mutation (EDM): Replace a

delegatecall by a call method in Solidity. The main

difference between the two is whether the function is

called in the context of the caller or the callee 6.

Gambit offers a configuration language that allows users to

customize the kinds of mutations and localize them to specific

functions or contracts in the code. The grammar for the

language is shown in Figure 3.

A Gambit configuration program is a list of configurations,

each of which defines a mutation task. A mutation task must

include a filename and optionally other arguments. Gambit

ensures that it produces valid mutants by running the Solidity

compiler on each mutant and filtering out invalid ones. Gambit

allows the user to configure the Solidity compiler by passing

various flags supported by Solidity compilers like optimization

settings, import paths, and remappings. Gambit also allows

users to localize mutants to specific contracts and functions,

and lets the user control which mutation operators they want

to enable. These features help Gambit generate fewer unhelp-

ful mutants. Using these filters, we avoid mutating internal

functions 7 that are never invoked by any public function.

There were two such functions, burn and mint. In total,

we obtained 64 mutants in 6 seconds using the following

configuration:

{
"filename": "ERC20.sol",
"solc": "solc8.20",
"contract": "ERC20",
"functions": [

"name",
"symbol",
"decimals",
"totalSupply",
"balanceOf",
"transfer",
"_transfer",
"_spendAllowance",
"_update",
"allowance",
"approve",
"_approve",
"transferFrom"

]

}

Upon manual inspection, we further found that 16 of these

mutants had changes in internal functions (like update) that

are only be observable from other internal functions and

therefore cannot be detected by ERCx. We removed these

additional tests and performed all our experiments with 48

mutants.

V. EVALUATION AND ANALYSIS

To evaluate the benefits of mutation-guided testing of smart

contracts, this section answers three research questions.

RQ1 Can undetected mutants be used to increase test ad-

equacy [38] of comprehensive hand-crafted test suites

(Section V-A)?

6https://solidity-by-example.org
7https://docs.soliditylang.org/en/latest/contracts.html#visibility-and-getters

344

function _spendAllowance(address o, address s, uint256 a) internal virtual {
uint256 curr = allowance(o, s);
if (curr != type(uint256).max) {

// ...

// ORIGINAL: approve(o, s, curr - a, false);

approve(o, s, curr + a, false); // MUTANT

}
}

(a) M1 increases, instead of decreases, an address’s allowance

function _transfer(address f, address t, uint256 value) internal {

// ORIGINAL: if (f == address(0)) {
if (false) { // MUTANT

revert ERC20InvalidSender(address(0));
}
// ...

}

(b) M2 skips a condition check for the zero address

function _approve(address o, address s, uint256 a, bool e) internal virtual {

// ORIGINAL if (o == address(0)) {
if (false) { // MUTANT

revert ERC20InvalidApprover(address(0));
}
// ...

}

(c) M3 skips a condition check for the zero address

function _approve(address o, address s, uint256 a, bool e) internal virtual {
// ...

// ORIGINAL if (s == address(0)) {
if (false) { // MUTANT

revert ERC20InvalidSpender(address(0));
}
// ...

}

(d) M4 skips a condition check for the zero address

function _spendAllowance(address o, address s, uint256 a) internal virtual {
uint256 curr = allowance(o, s);

// ORIGINAL if (curr != type(uint256).max) {
if (true) { // MUTANT

if (curr < a) {
revert ERC20InsufficientAllowance(s, curr, a);

}
unchecked {

_approve(o, s, curr - a, false);
}

}
}

(e) M5 skips a condition check to ensure an allowance is not type(uint256).max

Fig. 4: Five mutants from Gambit that passed all the hand-written tests in ERCx, exposing weaknesses in the test suite. Each

row shows the original function body (pink highlight shows original) and the mutated function body (green highlight shows

mutant) generated by Gambit. The full code of the original contract can be obtained from Openzeppelin [27] as mentioned in

Section IV-B. Functions starting with (like approve, update) are internal to the contract (Section II-A)

.

345

RQ2 Does a mutant-based correlation between tests corre-

spond to a redundancy between tests, and can this

redundancy be used to minimize a test suite without

affecting test suite adequacy (Section V-B)?

RQ3 Is a minimized test suite as effective at real-world fault

detection as the original test suite (Section V-C)?

We conducted all the experiments on a machine with 32GB

of RAM, 10 cores and running macOS Ventura 13.3.1. The

scripts for reproducing the graphs, data, and plots can be found

here: https://github.com/Certora/gambit/tree/icst2024/icst2024.

A. RQ1: Increasing Test Adequacy from Undetected Mutants

We ran 57 original, hand-written tests from ERCx on all

48 mutants. This original test suite detected 43 of the 48

generated mutants (mutation score of 89.6%). The remaining

five mutants, shown in Figure 4, were not detected:

• M1 modifies spendAllowance() to increase, instead of

decrease, an address’s approved allowance when that

address spends tokens.

• M2, M3, and M4 replace checks that ensure that the zero

address [39] is never participating in a transaction.

• M5 eliminates a condition check in spendAllowance()

that ensures that the current allowance is not the maxi-

mum value type(uint256).max.

Tests from Undetected Mutants. Each of the undetected

mutants M1–M5 corresponds to a potential fault in an ERC-

20 implementation that would not be detected by the original

hand-crafted test suite. We therefore extended the test suite

with five new test T1–T5 which detect M1–M5 respectively;

we refer to this extended test suite as the full test suite, TFull.

We illustrate this process by examining the test T1 that

was written to detect M1. M1 mutates spendAllowance()

by replacing approve’s argument currentAllowance - a

with currentAllowance + a. These two expressions evalu-

ate to different values iff a is non-zero, so any test that

detects this mutant must provide a non-zero value for a.

spendAllowance() is an internal function and a test cannot

invoke it directly. Instead, a test must invoke the public API in

a way that will cause the fault to be executed. transferFrom()

is the only external function that calls spendAllowance():

function transferFrom(address f, address t, uint256 v)
public virtual returns (bool) {
address s = _msgSender();
_spendAllowance(f, s, v);
_transfer(f, t, v);
return true;

}

transferFrom() passes its v argument as the a parameter

of spendAllowance (Figure 4), and the mutated expression

will differ from the original expression iff v is non-zero. A

simplified version of test testTransferDecreasesAllowance

from ERCx is given below:

function testTransferDecreasesAllowance(
uint256 am, uint256 all)

assume(am > 0);
assume(am <= balanceOf(alice));
assume(all >= am);
assume(all < MAX_UINT256);

Alice Bob
approve(Bob, 100)

transferFrom(Alice, Bob, 100)

Malfunction of spendAllowance that increases the allowance of Bob

transferFrom(Alice, Bob, balanceOf(Alice))

transferFrom(Alice, Bob, 100)

… …

Fig. 5: Sequence diagram showing how a malicious user (Bob)

can take advantage of the vulnerability exposed by the first

mutant in Figure 4.

TABLE I: Tests added to ERCx based on undetected mutants

and the ERCx category it is assigned.

ID Test Name ERCx Category
T1 testTransferDecreasesAllowance Critical
T2 testZeroAddressCannotTransfer Recommended
T3 testZeroAddressCannotApprove Recommended
T4 testCannotApproveZeroAddress Recommended
T5 testInfiniteApprovalConstant Fingerprint

assertSuccess(alice.approve(bob, all));
assertSuccess(bob.transferFrom(alice, carol, am));
assertEq(all - am, allowance(alice, bob));

}

Mutants M2–M5 led to tests T2–T5 in a similar fashion.

Tests T2–T4 catch instances of the zero address vulnerabil-

ity [39], and T5 checks that infinite allowance of a user always

remains infinite and does not ever change. Note that T5’s

relevance depends on the implementation of the ERC-20, and

failure of this test does not necessarily indicate a bug—it might

however point the developer to other potential faults in the

code.

Table I summarizes the new test cases. The ERCx devel-

opers labeled test T1–T5 according to the schema introduced

in Section III. Test T1, which prevents a real vulnerability

presented below (Section V-A1, was labelled critical, T2–T4

were labeled recommended, and T5 was labeled Fingerprint.

For the rest of the evaluation, we discard T5 as it is not in

the recommended, critical, or desirable category. In summary,

we ended up with 61 relevant tests in ERCx after improving

it with mutation testing: 19 critical, 5 recommended, and 37

desirable (did not change).

1) Attacking M1: To understand the importance of T1,

consider the attack scenario (Figure 5) that exploits the vulner-

ability introduced by M1. Alice approves some allowance for

Bob (in this case, 100 tokens), and Bob uses transferFrom()

to transfer this allowance to himself. A correct implementation

of the ERC-20 contract would decrement Bob’s allowance to 0,

346

and Bob would not be able to transfer further funds from Alice

to himself. Instead, M1’s fault increases Bob’s allowance from

100 tokens to 200 tokens, and Bob can continue to withdraw

funds from Alice. We conclude that uncaught mutants can act
as new test goals that can be used to improve existing test
suites.

B. RQ2: Using Test Correlation for Test Suite Minimization

Test suites face a trade-off between effectiveness and re-

source usage (usually measured in test suite running time).

Test suite minimization is as technique to reduce a test suite’s

resource usage without reducing the suite’s effectiveness. To

answer RQ2 we ran the full test suite, TFull, from Section V-A

on all mutants, and used the results to find redundancies

between tests. We then removed redundant tests manually,

resulting in a minimized test suite TMin.

A test enforces program properties (e.g., withdrawing tokens

should decrease an address’s allowance). Once a program

property has been tested, additional tests offer diminishing

returns: the first test will already be detecting some potential

faults, and additional tests are less likely to detect new faults.

We say that two tests are redundant if they enforce similar

program properties.

Mutants correspond to an alteration of some program

property or behavior: if multiple mutants alter the same

property then they are more likely to be detected by tests

enforcing that property. Thus, redundant tests should detect

similar sets of mutants and non-redundant tests should detect

dissimilar sets of mutants, and we use this insight to develop

a proxy measure for test redundancy.

1) Building a Test Correlation Model: Let T be a test suite

of program P , and let M be a mutant set for P . T ’s kill
matrix [40] K for mutant set M is defined to be the |T |×|M |
matrix, indexed by tests T and mutants M , such that for test

t ∈ T and mutant m ∈ M :

K[t,m] =

{
1 if test t detected mutant m

0 if test t did not detect mutant m

K’s rows correspond to a single test’s performance across all

mutants, and we denote the tth row of K by K[t].
Given a kill matrix K for T and M we can compute the

correlation between two tests ti and tj by computing the

correlation of their rows corr(K[ti],K[tj]). High correlation

between two tests indicate that the tests detected similar sets

of mutants, and low correlations indicate that the tests detected

different sets of mutants. We define the correlation matrix C
of T with respect to M to be the matrix that maps pairs of

tests to their correlation:

C[ti, tj] = corr(K[ti],K[tj]).

We computed the kill matrix KFull of TFull for the mutant

set generated in Section IV-C, and used this to compute the

correlation matrix CFull of TFull with respect to that mutant

set. CFull is shown in Figure 7 (Left). The X and Y axes

represent the 61 tests of TFull. Redder cells indicate higher

def h_minimize(T, corr, h):
"""
Greedily compute an h-minimization of
test suite T given test correlations
corr and threshold h
"""
i = 0
while i < len(T):

j = i + 1
while j < len(T):

if corr(T[i], T[j]) >= h:
T.pop(j)

else:
j += 1

Fig. 6: Greedy minimization algorithm for eliminating redun-

dant tests.

correlation, bluer cells correspond to lower correlation, and

white cells indicate no correlation. The matrix is symmetric,

since CFull[ti, tj] = CFull[tj , ti], and it’s down diagonal,

which plots the correlation of all tests with themselves, is

uniformly 1, showing that all tests are perfectly correlated

with themselves.

2) Using the Correlation Model to Minimize TFull: For test

suites T , S ⊆ T , and threshold h ∈ [0, 1], we say that S is an

h-minimization of T if S is a maximal set with the property

that corr(ti, tj) < h for all distinct ti, tj ∈ T . Formally,

1) ∀ti, tj ∈ S, ti 	= tj =⇒ corr(ti, tj) < h and

2) ∀ti ∈ T \ S, ∃tj ∈ S, corr(ti, tj) ≥ h.

We construct an h-minimization of T with the greedy

algorithm shown in Figure 6.

TFull took 561s to run on over all 48 mutants. To study

the effect that minimization has on the tradeoff between

suite running time and effectiveness, we used h minimize

to compute h-minimizations of TFull for h values from 0.95

to 0.5 in increments of 0.05. This resulted in 10 new test

suites: T0.95, T0.90, . . . , T0.55, and T0.50. We ran each h-

minimization on the mutants and recorded each suite’s running

time and number of undetected mutants (Figure 7 (Right)).

T0.90 maintained perfect effectivness, detecting all mutants,

while also seeing a 50% reduction in the running time from

T0.95. However, lower h values began to lose effectiveness

without any meaningful decrease in running time. Thus we

chose T0.90 as the minimized test suite, and we refer to it

as TMin for the remainder of this paper. TMin contains 34

tests, 27 fewer than the 61 in TFull. Notably, these 27 tests

did not include any of the 5 new tests added in Section V-A,

suggesting that these new tests enforce properties not enforced

by other tests in TFull. We conclude that the test correlation
model can be effectively used to minimize test suites.

C. RQ3: Running a Minimized Test Suite on Real, Buggy
Contracts

In Section V-B we saw that minimized test suite TMin is

able to detect all generated mutants. However, minimization

is only useful if it does not affect the suite’s ability to detect

347

Fig. 7: (Left) Correlation between ERCx tests across 48 mutants from Gambit. Both X and Y axes represent the 61 tests,

including the five added based on mutations. Red means higher correlation, blue means lower correlation. (Right) Relationship

between total running time of each test suite across all 48 mutants and the number of mutants caught, as correlated tests are

gradually removed. We see that when one of two highly correlated tests (above 90%) are removed, the coverage of the test

suite in terms of mutants caught remains the same (100%), but the running time of the test suite decreases from 561 seconds

to 253 seconds, or 5.3 seconds per mutant.

real-world faults. In this section we investigate the efficacy of

TMin for detecting faults in real-world token contracts.

We used the awesome-buggy-erc20 [41] dataset, a collection

of 107 real-world, faulty ERC-20 tokens deployed on the

Ethereum blockchain. We obtained source code for all 107

contracts from Etherscan [19]. We discarded one contract due

to long running time, leaving 106 real-world buggy contracts.

We ran both the full test suite TFull of 61 tests and the

minimized test suite TMin of 34 tests on all 106 contracts and

recorded the number of failed tests from each suite on each

contract.

TFull detected a fault in all buggy contracts, and TMin

detected a fault in all but one of the buggy contracts. The

bubble plot in Figure 8 shows the failure rates of TFull and

TMin for each of the real-world contracts. Each bubble is close

to the y = x line, indicating that the failure rates for both

test suites are approximately the same across all contracts.

This implies that the minimization process removes tests in

an unbiased fashion with respect to real world faults.

Figure 9 shows the running times of TFull and TMin on each

of the 106 contracts. TMin saw consistent speedups for all but

two contracts (DGX and LGD). This is due to network noise

as described in Section III.

We conclude that TMin, which was minimized using a
mutant-based test correlation metric, retained nearly all of
TFull’s real-world fault detection capabilities.

VI. DISCUSSION

This section discusses lessons learned, threats to validity,

limitations, and future directions we are interested in pursuing.

Fig. 8: Each dot represents the results of running full test

suite TFull and minimized test suite TMin on one or more real-

world faulty ERC-20 contracts. A dot’s X position shows

TFull’s failure rate on the corresponding contracts; a dot’s

X position shows TMin’s failure rate on the corresponding

contracts. Larger dots correspond to more contracts with the

same failure rates for both test suites.

348

Fig. 9: Comparing the running times of the two test suites TFull and TMin on 106 real-world, buggy contracts. The names on

the x-axis represent the symbols of the tokens. Each bar is the average of three runs of the test suite. Due to network noise,

TMin ran longer than TFull on two tokens (DGX and LGD).

A. Lessons Learned
This paper has three key takeaways that are applicable to

other smart contracts and also generalize to programs beyond

smart contracts.

Mutation-testing finds missing tests in robust test suites.
Even for thoroughly designed hand-written test suites,

mutation-guided test generation is an effective way to find

weaknesses. Hand-written tests may fail to detect faults that

test writers did not consider, and mutation testing elicits new

tests that target the faults a test writer may not have considered.

Mutants can be used for test minimization. A correlation

model between tests, computed by running the tests on

mutants, can be used to minimize a test suite that retains

most of the full test suite’s adequacy. We believe that this

correlation model is not unique to smart contracts and can be

generated for any domain using mutants and can be leveraged

to prioritize tests and minimize test suites.

Mutants reflect test behavior on real contracts. A test suite

can be minimized by removing tests that are highly correlated

with other tests, where correlation is measured by two tests’

ability to detect / not detect a mutant. We found that such a

minimized test suite is still effective in catching bugs in real-

world smart contracts.

B. Threats to Validity

Mutant generation is a simple syntactic fault generation

technique and does not consider program context or program

semantics. This means that there may be redundancy in

the mutant set: many mutants might correspond to a single

fault [42], [43]. This in turn could possibly affect correlations

between tests and alter test minimization. We believe that

any such affect will be minor: tests that agree on redundant

mutants still agree, and while the exact level of correlation

may fluctuate, the amount of fluctuation should be relatively

small.

C. Limitations and Future Directions

In this work, we evaluated, improved, and minimized a

test suite for ERC-20 token contracts. The canonical imple-

mentation we chose is only several hundred lines long, and

this made obtaining a perfect mutation score feasible. Smart

contracts for other types of tokens are comprised of many

more lines of code which will lead to many more mutants—

running an entire test suite on mutants for larger programs

would consume more resources. Making a comprehensive test

suite guided by mutants would therefore be more challenging,

though still feasible, for larger programs. However, this is a

one-time cost payed by the test developer while writing tests;

token designers do not need to pay this cost once the test suite

is written.

349

Additionally, redundant mutant detection can be used to

simplify the mutant set: by removing mutants that correspond

to the same underlying fault we reduce the number of test suite

invocations. Additionally, future work could leverage tech-

niques from mutation testing literature [42], [44] to mitigate

this problem.

Nevertheless, the insights we obtained from the correlation

model and the technique of the mutation-guided test suite

generation are general and we are currently exploring how

to apply them for other standards like ERC-721, ERC-4626,

ERC-1155, etc. The core ideas of this paper are not specific

to smart contracts and are applicable to areas beyond decen-

tralized finance, and prior work has already explored these

directions in other contexts (Section VII).

VII. RELATED WORK

Mutation testing and analysis are well-studied topics, in

academia [45] and industry [46], [47]. Mutation analysis [28],

[29] has been used to study the efficacy of test suites in terms

of number of detected mutants. Mutation testing [47] has also

been explored for improving test suites by adding tests guided

by undetected mutants. Recent surveys [48], [49] provide a

thorough discussion of both.

A. Mutation Testing for Smart Contracts

In the context of smart contracts, several mutation analysis

tools have been developed [34], [35], and more generic muta-

tion tools like the UniversalMutator [36] have been extended to

support smart contract languages like Solidity [4]. These tools

present early results of using mutation testing to evaluate the

coverage of test suites for a small number of smart contract

projects. Vertigo [35] uses mutations to show gaps in the test

suites from two smart contracts. To the best of our knowledge,

this is the first work that uses mutations to (1) discover new

tests in robust, industry-scale test suites, and (2) generate

reduced test suites based on a correlation model, in the domain

of smart contracts.

B. Correlation Models and Test Suite Minimization

Mutation testing based correlation modeling [50] has been

explored in the context of Java programs to understand if

mutants are suitable replacements for real faults. Test min-

imization is a well-studied topic [51], [52]. Prior work has

explored the use of greedy algorithms to select test cases that

have the most coverage in terms of lines of code. Prior work

also used mutants to develop multi-objective-optimization

solutions for test prioritization [53]. A recent survey [54]

presents several techniques used for test minimization and the

use of mutation testing to study the efficacy of the minimized

test suites. However, unlike this paper, they only use artificial

bugs (mutants) to study efficacy. Chen et al. [38] studied the

relationship between test set size, fault detection, and various

criteria used to measure the adequacy of a test suite, like

coverage, mutation score, etc. The work in this paper is similar

to Chen et al.’s idea of reducing test suites based on mutation

adequacy, which the authors show to be better than measures

like coverage adequacy. We showed that a test suite minimized

based on a correlation model guided by mutants can effectively

find bugs in real-world programs.

C. Other Methods for Checking Smart Contracts

This paper focuses on testing smart contracts and using

mutation testing to improve test suites. There are many other

techniques used to check and / or guarantee the correctness

of smart contracts. Formal verification [9]–[11], [14], [16],

[17] has been used to check that smart contracts satisfy

important properties. Many fuzzing tools [15], [55]–[57] both

in industrial and research settings have been proposed for

testing smart contracts on concrete inputs. Recent surveys [44],

[58] cover a wide range of tools and techniques for verifying

and testing smart contracts.

VIII. CONCLUSION

This paper presents a successful industrial case study on the

application of mutation testing to evaluate and improve test

suites for smart contracts. We found that undetected mutants

led to the discovery of five new tests that were missed by

experts, including one labeled critical by developers. Tests

that detected similar mutants indicated test redundancy, and

we used this redundancy to minimize the test suite. We showed

that this minimized test suite was able to detect faults in 105

out of 106 faulty, real-world smart contracts. Going forward,

we are eager to apply this approach to other protocols, other

languages for smart contracts, and to other domains beyond

smart contracts.

ACKNOWLEDGEMENTS

We thank the teams at Certora Inc. and Runtime Verification

for their help with developing Gambit and ERCx. We also

thank the anonymous reviewers for their thoughtful comments.

We are grateful to René Just and Zachary Tatlock from

University of Washington for their feedback on earlier versions

of this work.

REFERENCES

[1] “Welcome to ethereum,” 2023, https://ethereum.org.
[2] “Solana. powerful for developers. fast for everyone.” 2023, https://

solana.com/.
[3] “Hyperledger foundation.” 2023, https://www.hyperledger.org/.
[4] “Solidity documentation,” 2023, https://docs.soliditylang.org/en/v0.8.

20/.
[5] “Vyper documentation,” 2023, https://docs.vyperlang.org.
[6] “Rekt leaderboard,” 2023, https://rekt.news/leaderboard/.
[7] Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, and

A. Igarashi, “Helmholtz: A verifier for tezos smart contracts based on
refinement types,” 2021. [Online]. Available: https://arxiv.org/abs/2108.
12971

[8] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: A smart contract security analyzer for composite
vulnerabilities,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
454–469. [Online]. Available: https://doi.org/10.1145/3385412.3385990

[9] A. Mavridou and A. Laszka, “Designing secure ethereum smart
contracts: A finite state machine based approach,” CoRR, vol.
abs/1711.09327, 2017. [Online]. Available: http://arxiv.org/abs/1711.
09327

350

[10] A. Mavridou, A. Laszka, S. Emmanouela, and A. Dubey, “Verisolid:
Correct-by-design smart contracts for ethereum,” in Proceedings of the
23nd International Conference on Financial Cryptography and Data
Security (FC), February 2019.

[11] S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and
A. Gurfinkel, “Compositional verification of smart contracts through
communication abstraction,” in Static Analysis, C. Drăgoi, S. Mukherjee,
and K. Namjoshi, Eds. Cham: Springer International Publishing, 2021,
pp. 429–452.

[12] Certik, “Certik,” 2022, https://www.certik.com/.

[13] RV, “Runtime verification,” 2022, https://runtimeverification.com/.

[14] Certora, “Certora prover documentation,” 2022, https://docs.certora.com/
en/latest/.

[15] B. Jiang, Y. Liu, and W. K. Chan, ContractFuzzer: Fuzzing
Smart Contracts for Vulnerability Detection. New York, NY, USA:
Association for Computing Machinery, 2018, p. 259–269. [Online].
Available: https://doi.org/10.1145/3238147.3238177

[16] B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng, “Soltype:
Refinement types for arithmetic overflow in solidity,” Proc. ACM
Program. Lang., vol. 6, no. POPL, jan 2022. [Online]. Available:
https://doi.org/10.1145/3498665

[17] Y. Feng, E. Torlak, and R. Bodik, “Summary-based symbolic
evaluation for smart contracts,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1141–1152. [Online]. Available: https://doi.org/10.
1145/3324884.3416646

[18] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise
safety verifier for ethereum smart contracts,” in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 1678–1694.

[19] “The ethereum blockchain explorer,” 2023, https://etherscan.io/.

[20] V. B. Fabian Vogelsteller, “A standard interface for tokens.” 2015, https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

[21] N. Reiff, “What crypto users need to know: The
erc20 standard,” 2021, https://www.investopedia.com/tech/
why-crypto-users-need-know-about-erc20-token-standard/.

[22] O. Pomerantz, “Erc-20 contract walk-through,” March 8, 2021, https:
//ethereum.org/en/developers/tutorials/erc20-annotated-code/.

[23] C. Team, “2022 biggest year ever for crypto hacking with
$3.8 billion stolen, primarily from defi protocols and by north
korea-linked attackers,” 2023, https://blog.chainalysis.com/reports/
2022-biggest-year-ever-for-crypto-hacking/.

[24] D. Siegel, “Understanding the dao attack,” 2023, https://www.coindesk.
com/learn/understanding-the-dao-attack/.

[25] T. Budd and F. Sayward, “Users guide to the pilot mutation system,”
Yale University, New Haven, Connecticut, Technique Report, vol. 114,
1977.

[26] T. A. Budd, R. J. Lipton, R. DeMillo, and F. Sayward, “The design
of a prototype mutation system for program testing,” in Managing
Requirements Knowledge, International Workshop on. IEEE Computer
Society, 1978, pp. 623–623.

[27] “Openzepplin’s erc20 implementation,” 2023, https://github.com/
OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/
ERC20/ERC20.sol.

[28] R. Just, “On effective and efficient mutation analysis for unit and
integration testing,” Ph.D., Ulm University, 2013.

[29] J. Offutt, “A mutation carol: Past, present and future,” Information &
Software Technology, vol. 53, pp. 1098–1107, 10 2011.

[30] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’00.
New York, NY, USA: Association for Computing Machinery, 2000, p.
268–279. [Online]. Available: https://doi.org/10.1145/351240.351266

[31] “Foundry forge documentation,” 2023, https://book.getfoundry.sh.

[32] Certora and Openzepplin, “A library for secure smart contract develop-
ment,” 2022, https://github.com/Certora/openzeppelin-contracts.

[33] Y. Jia and M. Harman, “Higher order mutation testing,” Information
and Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009, source
Code Analysis and Manipulation, SCAM 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584909000688

[34] M. Barboni, A. Morichetta, and A. Polini, “Sumo: A mutation testing
strategy for solidity smart contracts,” 2021.

[35] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation
testing for smart contracts,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, C. Pérez-Solà, G. Navarro-Arribas,
A. Biryukov, and J. Garcia-Alfaro, Eds. Cham: Springer International
Publishing, 2019, pp. 289–303.

[36] A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang, “An extensible,
regular-expression-based tool for multi-language mutant generation,”
in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 25–28.
[Online]. Available: https://doi.org/10.1145/3183440.3183485

[37] “Using gambit with the prover,” 2023, https://docs.certora.com/en/latest/
docs/gambit/mutation-verifier.html.

[38] Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, and R. Just, “Revisiting the relationship
between fault detection, test adequacy criteria, and test set size,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 237–249. [Online].
Available: https://doi.org/10.1145/3324884.3416667

[39] T. Gündüzgiln, “Most common smart contract vulnerabilities (part
4) missing zero address validation,” 2023, https://www.linkedin.com/
pulse/most-common-smart-contract-vulnerabilities-part-4-zero-g%
C3%BCnd%C3%BCzgil/.

[40] D. Amalfitano, A. C. R. Paiva, A. Inquel, L. Pinto, A. R. Fasolino, and
R. Just, “How do java mutation tools differ?” Communications of the
ACM (CACM), pp. 1–23, Jan. 2022.

[41] S. Labs, “Awesome buggy erc20 tokens,” 2023, https://github.com/
sec-bit/awesome-buggy-erc20-tokens/blob/master/bad tokens.top.csv.

[42] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-redundant
mutation operators and test suite prioritization to achieve efficient
and scalable mutation analysis,” in Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), November 28–
30 2012, pp. 11–20.

[43] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” Software Testing, vol. 7, 1997.

[44] A. J. Offutt, “Investigations of the software testing coupling effect,”
ACM Trans. Softw. Eng. Methodol., vol. 1, no. 1, p. 5–20, jan 1992.
[Online]. Available: https://doi.org/10.1145/125489.125473

[45] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), San Jose, CA, USA, July 23–25
2014, pp. 433–436.

[46] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Practical mutation
testing at scale: A view from google,” IEEE Transactions on Software
Engineering (TSE), pp. 1–13, Aug. 2021.

[47] G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” in 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2018, pp. 47–
53.

[48] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and
M. Harman, “Chapter six - mutation testing advances: An analysis
and survey,” ser. Advances in Computers, A. M. Memon, Ed.
Elsevier, 2019, vol. 112, pp. 275–378. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0065245818300305

[49] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[50] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
FSE 2014: Proceedings of the ACM SIGSOFT 22nd Symposium on the
Foundations of Software Engineering, Hong Kong, Nov. 2014, pp. 654–
665.

[51] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of
a test suite,” Inf. Process. Lett., vol. 60, no. 3, p. 135–141, nov 1996.
[Online]. Available: https://doi.org/10.1016/S0020-0190(96)00135-4

[52] G. Mason and J. Pan, “Procedures for reducing the size of coverage-
based test sets,” 1995. [Online]. Available: https://api.semanticscholar.
org/CorpusID:94732

[53] Z. Wei, W. Xiaoxue, Y. Xibing, C. Shichao, L. Wenxin, and L. Jun,
“Test suite minimization with mutation testing-based many-objective
evolutionary optimization,” in 2017 International Conference on Soft-
ware Analysis, Testing and Evolution (SATE), 2017, pp. 30–36.

351

[54] R. Noemmer and R. Haas, “An evaluation of test suite minimization
techniques,” in International Conference on Software Quality. Process
Automation in Software Development, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:210510262

[55] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1398–1409. [Online].
Available: https://doi.org/10.1145/3368089.3417064

[56] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
Effective, usable, and fast fuzzing for smart contracts,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 557–560. [Online].
Available: https://doi.org/10.1145/3395363.3404366

[57] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p.
322–333. [Online]. Available: https://doi.org/10.1145/3597926.3598059

[58] M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” in 2019 IEEE International Conference on Decentral-
ized Applications and Infrastructures (DAPPCON), 2019, pp. 69–78.

352

